

Genekor Medical S.A. 52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com

Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

SAMPLE INFORMATION

Name:	-	Date Sp. Extracted:	-
Medical ID:	-	Req. Physician:	-
Date Of Birth:	-	Report No:	-
Material #1:	PARAFFIN EMBEDDED TISSUE-BLOCK	Date Received:	-
Material #2:	-	Date Of Report:	-
Sample #1 ID:	-	Tumor type:	GLIOBLASTOMA

primeDX - 1021 Unique Genes (38 Fusions) analyzed

1. Report Summary

- Biomarker related approved therapies for indication
 Biomarker related therapies with potential resistance
- 4 Biomarker related therapies with potential benefit11 Biomarker related Clinical Trials

2. Clinically Significant Biomarkers*

Biomarker	Result	cancer		Therapies with potential resistance	Clinical Trials	
PTEN	Exon 6 c.493G>A (p.G165R)		Capivasertib+Fulvestrant (2C.1) Everolimus (2C.1) Temsirolimus (2C.1) Sirolimus (2C.1)	-	yes	
TP53	Exon 5 c.524G>A (p.R175H)	-	-	-	yes	
TERT	c146C>T (C250T)	-			yes	
Microsatellite Instability (MSI)	Stable (MSS)			-	-	
Tumor Mutational Burden (TMB)	1.65 Muts/MB			-	-	
Immunohistochemistry Biomarkers						
PD-L1 expression (<u>Table S2</u>)	TC=40% , IC<1%	Durvalu	. Atezolizumab, Nivolumab ımab, Cemiplimab mab+Ipilimumab	-	-	

*Note: Variants' Level of Evidence (LoE) (e.g. 1A.1, 2C.1, 1B etc) are based on the Joint consensus recommendation of AMP, ACMG, ASCO and CAP for reporting genetic variants in cancer. For a detailed description of the recommendation please refer to Fig. 1

Page 2 of 35

Genekor Medical S.A. 52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:

Report No:

_

- 1. <u>Report Summary</u>
- 2. Clinically Significant Biomarkers
- 3. Important biomarkers findings
- 4. Immune Checkpoint inhibitors biomarkers
- 5. Interpretations for targeted therapies
- 6. Interpretation for polymorphism variants related with chemotherapy drugs
- 7. Other Genomic findings
- 8. Variants of Uncertain Significance (VUS)
- 9. <u>Suspected Germline variants</u>
- 10. HLA-I Polymorphism variation
- 11. Clinical Trials to consider
- 12. Appendix
 - a. Immune checkpoint inhibitors predictive biomarkers
 - b. <u>Methodology</u>
 - c. Quality Control Results
 - d. Genes analyzed
 - e. Levels of Evidence for Genomic Biomarkers
- 13. <u>References</u>

Name:

Report No:

-

3. Important biomarkers findings

Gene	Detected Range	Finding
		(VAF/Copy Number/Germline Mutation)
	Exon 18	Not detected
EGFR	Exon 19	Not detected
-	Exon 20(including T790M)	Not detected
	Exon 21	Not detected
ERBB2(HER2)	Copy number gain	Not detected
	Mutation	Not detected
ESR1	Mutation	Not detected
ALK	Rearrangement	Not detected
ROS1	Rearrangement	Not detected
MET	Copy number gain	Not detected
IVIEI	Exon 14 skipping	Not detected
RET Rearrangement		Not detected
BRAF	Codon 600 mutation	Not detected
	Exon 9	Not detected
V 1 T	Exon 11	Not detected
KIT	Exon 13	Not detected
-	Exon 17	Not detected
	Exon 12	Not detected
PDGFRA	Exon 18	Not detected
BRCA1	Mutation	Not detected
BRCA2	Mutation	Not detected
	Codon 12/13/59/61/117/146 mutation	Not detected
KRAS	Other mutations except codon 12/13/59/61/117/146	Not detected
	Codon 12/13/59/61/117/146 mutation	Not detected
NRAS	Other mutations except codon 12/13/59/61/117/146	Not detected
РІКЗСА	Mutation	Not detected
50502	Rearrangement	Not detected
FGFR2	Mutation	Not detected
50502	Rearrangement	Not detected
FGFR3	Mutation	Not detected
NTRK1	Rearrangement	Not detected
NTRK2	Rearrangement	Not detected
NTRK3	Rearrangement	Not detected
IDH1	Mutation	Not detected

Note:

1. 'Not detected/-' indicates the corresponding variations were not detected in this tested individual.

2. The genetic variations listed above are covered, but not limited to this list.

3. For a detailed information about listed variants, please refer to the Report Summary and the respective Interpretations sections.

Name:

_

Report No:

_

4. Immune Checkpoint inhibitors biomarkers

	Biomarker/Variant	Result	Clinical Interpretation
		Biomarkers for predicting	efficacy
Tumor mutatio	n burden (TMB)	TMB-L 1.65	-
Microsatellite i	nstability (MSI)	Stable (MSS)	-
	Affect	the treatment effect - posi	tive correlation
PD-L1 amplifica	ation	Not detected	-
<i>PBRM1</i> inactiv carcinoma)	vating mutation Renal clear cell	Not detected	-
MLH1 suspecte	ed germline deleterious mutation	Not detected	-
MSH2 suspecte	ed germline deleterious mutation	Not detected	-
MSH6 suspecte	ed germline deleterious mutation	Not detected	-
PMS2 suspecte	d germline deleterious mutation	Not detected	-
POLE mutation	(driver)	Not detected	-
POLD1 mutatio	n (driver)	Not detected	-
	ATM mutation	Not detected	-
	ATR mutation	Not detected	-
	BAP1 mutation	Not detected	-
	BLM mutation	Not detected	-
	BRCA1 mutation	Not detected	-
	BRCA2 mutation	Not detected	-
	BRIP1 mutation	Not detected	-
	CHEK1 mutation	Not detected	-
Other DNA	CHEK2 mutation	Not detected	-
damage	ERCC3 mutation	Not detected	-
repair (DDR)	ERCC4 mutation	Not detected	-
pathway	ERCC5 mutation	Not detected	-
genes	FANCA mutation	Not detected	-
	FANCC mutation	Not detected	-
	MRE11A mutation	Not detected	-
	NBN mutation	Not detected	-
	RAD50 mutation	Not detected	-
	RAD51 mutation	Not detected	-
	RAD51B mutation	Not detected	-
	RAD51D mutation	Not detected	-
	RAD54L mutation	Not detected	-
	TP53 mutation	Detected	May increase the benefit rate of PD-1/PD-L1 inhibitors
	KRAS mutation	Not detected	-
	Biomarker/Variant	Result	Clinical Interpretation

Electronically Signed by

Name:

Report No:

_

Affect the treatment effect - negative correlation					
PTEN inactivating mutation	Detected	Increased of resistance risk when treated with PD-1/PD-L1 inhibitors			
JAK1 inactivating mutation	Not detected	-			
JAK2 inactivating mutation	Not detected	-			
B2M inactivating mutation	Not detected	-			
EGFR mutation (L858R/EX19del)	Not detected	-			
ALK rearrangement	Not detected	-			
STK11 inactivating mutation	Not detected	-			
KEAP1 inactivating mutation	Not detected	-			
11q13 amplification	Not detected	-			
MDM2 amplification	Not detected	-			
MDM4 amplification	Not detected	-			
DNMT3A inactivating mutation	Not detected	-			
Indicator affecting prognosis of immune checkpoint inhibitor therapy					
HLA-I Zygosity (At least one of type A, B, C is homozygous)	Not detected	-			

Note:

- 1. Not detected/- indicates the corresponding variation were not detected in this tested individual.
- 2. The interpretation of the detection results of *PBRM1* inactivating mutations is only applicable to renal clear cell carcinoma.
- 3. The indicators/gene clinical interpretations listed above are for reference only, and the specific decisions need to refer to professional physician instructions.
- 4. For a detailed interpretation, showed in Interpretation for biomarker of checkpoint inhibitor.
- 5. *POLE* and *POLD1* mutations are restricted to currently reported mutations that may lead to hypermutation in tumor, resulting in tumor mutation burden increase.
- HLA-I results analyzed by the phenotypes of HLA-A, HLA-B and HLA-C loci detected from tumor samples. Due to the lack of control samples, HLA-I typing cannot be accurately analyzed and it is possible that show homozygosity because of the occurrence of HLA-LOH in the tumor tissue.

Genekor Medical S.A. 52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com

Tel. (+30) 210 6032138 Fax. (+30) 210 6032148

Scientific Director: George Nasioulas PhD

Name:

5. Interpretations for targeted therapies

prime DX

PRECISION INDIVIDUALIZED MEDICINE

Genetic Variation:	NM_000314.4(PTEN):c.493G>A(p.G165R) VAF: 61.5%	<u>OncoKB</u> Ø	<u>CIViC</u> Ø	<u>COSMIC</u> ®	
Therapies:	Capivasertib+Fulvestrant,Everolimus,Temsirolimus,Sirolimus (2C.1),				

Report No:

Gene Description

PTEN (phosphatase and tensin homolog deleted on chromosome ten) is a lipid/protein phosphatase that plays a role in multiple cell processes, including growth, proliferation, survival, and maintenance of genomic integrity. Cancer-associated alterations in PTEN often result in PTEN inactivation and thus increased activity of the PI3K-AKT pathway. Cancer-associated alterations in PTEN often result in PTEN inactivation and thus increased activity of the PI3K-AKT pathway. Germline loss-of-function PTEN mutations occur in approximately 80% of patients with the cancer predisposition syndrome Cowden disease, which is associated with high-penetrance breast and thyroid cancer (PMID: 21430697). Somatic mutations of PTEN occur in multiple malignancies, including gliomas, melanoma, prostate, endometrial, breast, ovarian, renal, and lung cancers. PTEN inactivation is induced by mutations that lead to a loss of expression and is induced to a lesser extent by a loss of heterozygosity. While the most critical duty of PTEN is the negative regulation of the PI3K/mTOR/Akt oncogenic pathway, thus inhibiting uncontrolled cell survival, growth and migration, further crucial antioncogenic functions have been attributed to PTEN. Mutations in PTEN have often been detected in metastases of prostate cancer; however, lower rates of mutations have been found in localized tumors (0 to 20% in different studies) (PMID: 26000489,26000489,17701929).

Variant Description

PTEN G165R lies within the phosphatase tensin-type domain of the Pten protein (UniProt.org). G165R results in suppression of Akt signaling similar to wild-type Pten in cell culture (PMID: 32704382), but results in a loss of phosphatase activity in an in vitro assay and a yeast assay (PMID: 10866302, 29706350), and therefore, is predicted to result in a loss of Pten protein function. Based on the available evidence to date, this variant is likely to be pathogenic.

Targeted Drug Interpretation

Food and Drug Administration approved capivasertib with fulvestrant for adult patients with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative locally advanced or metastatic breast cancer with one or more PIK3CA/AKT1/PTEN-alterations, as detected by an FDA-approved test. The mTOR inhibitor Everolimus is FDA approved, in combination with the aromatase inhibitor exemestane, to treat postmenopausal women with hormonereceptor- positive, HER2-negative advanced breast cancer. Temsirolimus is an mTOR inhibitor that is FDA approved to treat advanced renal cell carcinoma. These therapies and other mTOR inhibitors are in clinical trials in breast cancer and other solid tumor types. Inhibitors of PI3K and AKT, alone or in combination with other therapies are also in clinical trials in solid tumors. A preclinical study indicates that PIK3CA mutation predicts sensitivity to the PI3K-alpha-specific inhibitor alpelisib, which may have a bigger therapeutic window than pan-PI3K inhibitors The use of everolimus and sirolimus in patients with PTEN-mutant glioblastoma has been examined in clinical trials.

Capivasertib

DrugBank Ø

Capivasertib is a serine/threonine kinase inhibitor used to treat hormone receptor-positive, HER2-negative, locally advanced or metastatic breast cancer. On November 17th, 2023, capivasertib, under the brand name TRUQAP, was approved by the FDA for the treatment of adult patients HR-positive, HER2-negative locally advanced or metastatic breast cancer with one or more alterations in PIK3CA/AKT1/PTEN gene(s) in combination with fulvestrant.

Fulvestrant

<u>DrugBank</u> [©]

Genekor a company certified with ELOT EN ISO 9001:2015 (Cert. No 041150049), ELOT ISO/IEC 27001:2013 (Cert. No 048190009) and accredited under the terms of ELOT EN ISO 15189:2012 (Cert. No. 822)

Name:

Report No:

Fulvestrant is a drug treatment of hormone receptor (HR)-positive metastatic breast cancer in post-menopausal women with disease progression following anti-estrogen therapy. It is an estrogen receptor antagonist with no agonist effects, which works both by down-regulating and by degrading the estrogen receptor. While it is used as monotherapy for the treatment of breast cancers, it is also used in combination with for the treatment of HR-positive, human epidermal growth factor receptor 2 (HER2)-negative, PIK3CA-mutated, advanced or metastatic breast cancer For the treatment of hormone receptor positive metastatic breast cancer in postmenopausal women with disease progression following anti-estrogen therapy, as monotherapy or in combination with other antineoplastic agents.

Everolimus

DrugBank Ø

Everolimus is a derivative of Rapamycin (sirolimus), and works similarly to Rapamycin as an mTOR (mammalian target of rapamycin) inhibitor. It is currently used as an immunosuppressant to prevent rejection of organ transplants. In a similar fashion to other mTOR inhibitors Everolimus' effect is solely on the mTORC1 protein and not on the mTORC2 protein. Everolimus is indicated for the treatment of postmenopausal women with advanced hormone receptor-positive, HER2-negative breast cancer (advanced HR+ BC) in combination with exemestane, after failure of treatment with letrozole or anastrozole; indicated for the treatment of adult patients with progressive neuroendocrine tumors of pancreatic origin (PNET) with unresectable, locally advanced or metastatic disease; indicated for the treatment of adult patients with advanced renal cell carcinoma (RCC) after failure of treatment with sunitinib or sorafenib; indicated for the treatment of adult patients with renal angiomyolipoma and tuberous sclerosis complex (TSC), not requiring immediate surgery; indicated in pediatric and adult patients with tuberous sclerosis complex (TSC) for the treatment of subependymal giant cell astrocytoma (SEGA) that requires therapeutic intervention but cannot be curatively resected.

Temsirolimus

Temsirolimus is a derivative of sirolimus used in the treatment of renal cell carcinoma (RCC). It was developed by Wyeth Pharmaceuticals under the trade name Torisel. Temsirolimus was approved by the FDA in late May 2007 as well as the European Medicines Agency (EMEA) on November 2007. For the treatment of renal cell carcinoma (RCC). Also investigated for use/treatment in breast cancer, lymphoma (unspecified), rheumatoid arthritis, and multiple myeloma.

Sirolimus

DrugBank Ø

DrugBank 🥝

A macrolide compound obtained from Streptomyces hygroscopicus that acts by selectively blocking the transcriptional activation of cytokines thereby inhibiting cytokine production. It is bioactive only when bound to immunophilins. Sirolimus is a potent immunosuppressant and possesses both antifungal and antineoplastic properties. For the prophylaxis of organ rejection in patients receiving renal transplants.

Genekor Medical S.A. 52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.Ml. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:

		•			
Genetic Variation:	NM_000546.5(TP53):c.524G>A(p.R175H)	VAF: 60.9%	<u>OncoKB</u> Ø	<u>CIViC</u> ∅	<u>COSMIC</u> ₽
herapies:	Under investigation in clinical trials				

Report No:

Gene Description

The tumor suppressor gene P53 encodes a ubiquitous nuclear protein involved in the control of genome integrity by preventing cells from dividing before DNA damage is repaired. P53 mutations are universal across cancer types. Loss of tumor suppressors is most recognized by large deleterious events, such as frameshift mutations, or premature stop codons. In TP53 however, many of the observed mutations in cancer are found to be single nucleotide variants, or missense mutations. These variants are also very broadly distributed throughout the gene, not localizing in any particular hotspot. Somatic TP53 mutations occur in almost every type of cancer at rates from 38% to 50% in lung, ovarian, esophageal, colorectal, head and neck and larynx cancers to about 5% in primary leukemia, sarcoma, testicular cancer, malignant melanoma, and cervical cancer (PMID: 20182602). While a large proportion of cancer genomics research is focused on somatic variants, TP53 mutations may be potential prognostic and predictive markers in some tumor types, as well as targets for pharmacological intervention in some clinical setting. Germline TP53 mutations are the hallmark of Li-Fraumeni syndrome, and many (both germline and somatic) have been found to have prognostic impact on patient outcomes (PMID: 14583457).

Variant Description

TP53 p.Arg175His is present in population databases (rs28934578, ExAC 0.001%) and has been observed in individuals and families affected with Li-Fraumeni syndrome, osteosarcoma, breast cancer and ovarian carcinoma (PMID: 8825920, 8164043, 21761402, 22006311, 16401470). ClinVar contains an entry for this variant (Variation ID: 12374). This is a well-studied variant, located in a known mutation hotspot within the central DNA-binding domain of TP53 (PMID: 23263379, 20516128, 24573247, 12007217). It causes not only loss of the tumor suppressor function of the TP53 protein, but also oncogenic gain-of-function (PMID: 23792586, 23263379).

Genetic Variation:	NM_198253.2(TERT): c146C>T (C250T) VAF: 32	4%	<u>OncoKB</u> Ø	<u>CIViC</u> Ø	<u>COSMIC</u> ®
Therapies:	Under investigation in <u>clinical trials</u>				

Gene Description

The TERT gene encodes the catalytic subunit of telomerase, an enzyme that maintains telomere length and genomic integrity. TERT expression is low or absent in somatic cells; however, telomerase activity is upregulated in a vast majority of tumors and likely contributes to cancer cell immortality (PMID: 9282118). Sequencing of the TERT promoter identified activating mutations in a number of cancer types including melanoma, hepatocellular carcinoma, urothelial carcinoma, medulloblastoma and glioma (PMID: 23530248). Tumors with highly recurrent TERT promoter mutations tend to originate from tissues with lower rates of self-renewal (PMID: 23530248). In addition to promoter mutations, TERT, located on chromosome 5p, is amplified across many cancer types (PMID: 20164920). A comprehensive analysis of a TCGA data set found that among 6835 cancers, 73% expressed TERT. The TERT-expressing cancers were associated with TERTp mutations and with other point mutations, genomic rearrangements, DNA amplifications, or transcript fusions, and these alterations could predict telomerase activity (PMID: 28135248). Regarding glioblastoma, mutations commonly occur at two hotspots, referred to as C228T and C250T, which are mutually exclusive and occur in 80–90% of glioblastoma patients (PMID: 23530248, 26061753, 26143636, 26765760, 25681309). Such tumors most frequently have a frontal (PMID: 29650441) or temporal location (PMID: 27230769) and occur more frequently in older patients compared to IDH-mutated (IDH-mut) glioblastoma. Recently, two other TERTp gain-of-function alterations were described: TERTp c.1-100_1-79dup and TERTp c.1-110_1-89. These newly-described alterations occur in less than 1% of glioblastoma IDH-wild type (IDH-wt). The prognostic role of TERTp mutations has not been clearly established since there are numerous confusing factors both clinical such as age, initial surgical procedure, and molecular such as IDH mutations, MGMT methylation status, or EGFR amplification.

Electronically Signed by

Name:

Report No:

-

A better understanding of the molecular mechanisms underlying TERTp-mutated glioblastoma could lead to the development of TERTtargeted therapies. Preclinical and clinical trials are ongoing, but no such therapy has yet demonstrated clinical efficiency in glioblastoma patient care.

Name:

_

Report No:

_

6. Interpretation for polymorphism variants related with chemotherapy drugs

Biomarkers associ	ated with treatment respo	nse				
Drug Classes	Drug name	Gene	dbSNP	Patient's Genotype	Patient's Variant-Drug Phenotype Annotation	Evidence Level
5-Fluorouracil (5- Fu), Fluoropyrimidines	5-Fu + Oxaliplatin	GSTP1	rs1695	GG	Associated with better response to treatment	2A
Anthracyclines	Epirubicin	GSTP1	rs1695	GG	Associated with poorer response to treatment	2A
Aromatase	Letrozole, Anastrozole	CYP19A1	rs4646	сс	Associated with poorer response to treatment	3
inhibitors	Anastrozole	ABCB1	rs2032582	сс	Associated with poorer response to treatment	3
	Cyclophosphamide	XRCC1	rs25487	сс	Associated with better response to treatment	3
Cyclophosphamide	Cyclophosphamide	SOD2	rs4880	AG	Associated with moderate response to treatment	2B
	Cyclophosphamide + Epirubicin	GSTP1	rs1695	GG	Associated with poorer response to treatment	2A
Methotrexate	Methotrexate	ATIC	rs4673993	сс	Associated with better response to treatment	2B
Pemetrexed	Pemetrexed	MTHFR	rs1801133	GG	Associated with better response to treatment	3
	Carboplatin	MTHFR	rs1801133	GG	Associated with poorer response to treatment	2A
	Platinum compounds	XRCC1	rs1799782	GG	Associated with poorer response to treatment	NA
Platinum-Based Chemotherapy	Carboplatin, Cisplatin, Oxaliplatin, Platinum, Platinum compounds	ERCC1	rs11615	AG	Associated with poorer response to treatment	2B
	Carboplatin, Cisplatin, Oxaliplatin, Platinum, Platinum compounds	XRCC1	rs25487	сс	Associated with better response to treatment	2B
Toyonoo	Paclitaxel + Cisplatin	TP53	rs1042522	сс	Associated with better response to treatment	2В
Taxanes	Paclitaxel	ABCB1	rs2032582	сс	Associated with poorer response to treatment	3
Vinca alkaloids	Vincristine	ABCB1	rs1045642	GG	Associated with better response to treatment	3

Biomarkers associated with drug toxicity

Drug Classes	Drug name	Gene	dbSNP	Patient's Genotype	Patient's Variant-Drug Phenotype Annotation	Evidence Level
	5-Fu or Capecitabine	DPYD	rs2297595	Π	Associated with decreased risk of drug toxicity	2A
5-Fluorouracil (5-Fu), Fluoropyrimidines	5-Fu or Capecitabine	MTHFR	rs1801133	GG	Associated with decreased risk of drug toxicity	2A
	5-Fu + Leucovorin or Tegafur + Leucovorin	UMPS	rs1801019	GG	Associated with decreased risk of drug toxicity	2B
	Fluoropyrimidine-based therapy	DPYD	rs67376798	Π	Associated with decreased risk of drug toxicity	1A
	Fluoropyrimidine-based therapy	DPYD	rs55886062	AA	Associated with decreased risk of drug toxicity	1A
	Fluoropyrimidine-based therapy	DPYD	rs3918290	СС	Associated with decreased risk of drug toxicity	1A

Electronically Signed by

Name:

Report No:

_

	Anthracyclines	CBR3	rs1056892	AG	Associated with increased risk of drug toxicity	2B
Anthracyclines	Epirubicin	GSTP1	rs1695	GG	Associated with increased risk of drug toxicity	2A
	Capecitabine-Based Chemotherapy	MTHFR	rs1801131	Π	Associated with decreased risk of drug toxicity	2A
	Capecitabine-Based Chemotherapy	DPYD	rs2297595	Π	Associated with decreased risk of drug toxicity	2A
Capecitabine	5-Fu or Capecitabine	MTHFR	rs1801133	GG	Associated with decreased risk of drug toxicity	2A
Capecitabilie	Capecitabine	DPYD	rs67376798	Π	Associated with decreased risk of drug toxicity	1A
	Capecitabine	DPYD	rs55886062	AA	Associated with decreased risk of drug toxicity	1A
	Capecitabine	DPYD	rs3918290	CC	Associated with decreased risk of drug toxicity	1A
Cyclophosphamide	Cyclophosphamide	MTHFR	rs1801133	GG	Associated with decreased risk of drug toxicity	2A
Cyclophosphannue	Cyclophosphamide + Epirubicin	GSTP1	rs1695	GG	Associated with increased risk of drug toxicity	2A
Gemcitabine	Gemcitabine	CDA	rs2072671	AC	Associated with increased risk of neutropenia and hematologic toxicity	2B
	Irinotecan	UGT1A1	rs8175347	6TA/6TA	Associated with decreased risk of drug toxicity	2A
Irinotecan	Irinotecan	UGT1A1	rs4148323	GG	Associated with decreased risk of drug toxicity	2A
	Irinotecan	C8orf34	rs1517114	GG	Associated with decreased risk of drug toxicity	2B
Mathata and	Methotrexate	MTRR	rs1801394	AG	Associated with increased risk of drug toxicity	2B
Methotrexate	Methotrexate	ABCB1	rs1045642	GG	Associated with decreased risk of drug toxicity	2A
	Cisplatin	XPC	rs2228001	GT	Associated with increased risk of drug toxicity	1B
	Platinum compounds	GSTP1	rs1695	GG	Associated with decreased risk of drug toxicity	2A
Platinum-Based	Cisplatin, Platinum, Platinum compounds	ERCC1	rs3212986	AC	Associated with increased risk of drug toxicity	2B
Chemotherapy	Carboplatin, Cisplatin, Oxaliplatin, Platinum, Platinum compounds	ERCC1	rs11615	AG	Associated with increased risk of drug toxicity	2B
	Carboplatin, Cisplatin, Oxaliplatin, Platinum, Platinum compounds	XRCC1	rs25487	CC	Associated with increased risk of drug toxicity	2B

Note:

1. The level of variant-drug associations evidence is based on PharmGKB website, for more detailed information please see http://www.pharmgkb.org/page/clinAnnLevels.

Level 1A: Annotation for a variant-drug combination in a CPIC- or medical society-endorsed pharmacogenomics guideline, or implemented at a PGRN site, or in another major health system;

Level 1B: Annotation for a variant-drug combination in which the preponderance of evidence shows an association. The association must be replicated in more than one cohort with significant P-values, and, preferably with a strong effect size;

Level 2A: Annotation for a variant-drug combination that qualifies for level 2B where the variant is within a VIP (Very Important Pharmacogene) as defined by PharmGKB. The variants in level 2A are in known pharmacogenes, so functional significance is more likely;

Electronically Signed by

Name:

Report No:

_

Level 2B: Annotation for a variant-drug combination with moderate evidence of an association. The association must be replicated, but there may be some studies that do not show statistical significance, and/or the effect size may be small;

Level 3: Annotation for a variant-drug combination based on a single significant (not yet replicated) study or annotation for a variant-drug combination evaluated in multiple studies but lacking clear evidence of an association;

Level 4: Annotation based on a case report, non-significant study, or in vitro, molecular, or functional assay evidence only.

2. The variant-drug correlation relationship derived from multiple independent studies, therefore, the interpretations of the same class of drug for the tested individual may be inconsistent. The final drug instruction needs to combine with the specific clinical situation.

3. The detection results are only based on the analysis of tumor samples and lack of control, the results of some loci may be specific to tumor tissues due to factors such as loss of heterozygosity.

Name:

Report No:

_

7. Other Genomic findings*

*Note: In this section, damaging variants in genes without clinical actionability or without convincing evidence of cancer association are reported.

Genetic Variation:	
Therapies:	

8. Variants of Uncertain Significance (VUS)

The clinical significance of the variants listed in the below table is uncertain at this time. Until the uncertainty is resolved, these variants should not be used in clinical management decisions.

Gene	Variant	Interpretation
ERCC1	c.442C>G (p.L148V)	ERCC1 (ERCC Excision Repair 1, Endonuclease Non-Catalytic Subunit) functions in the nucleotide excision repair pathway, and is required for the repair of DNA lesions (PMID: 26074087, 32099408). ERCC1 expression level has been correlated with response to platinum-based therapies in various tumor types, including ovarian, non-small cell lung, and head and neck cancers (PMID: 26804248, 26179868, 26870207). A missense alteration in ERCC1,p.L148V, is identified in this case. This alteration is of uncertain clinical significance. (ACMG & Clingen classification)

Genekor Medical S.A. 52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.Ml. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:

Report No:

9. Suspected Germline variants

Gene	Transcript	Exon	c.HGVS	p.HGVS	Zygosity	Classification
-	-	-	-	-	-	-

Note:

- 1. indicates no relevant variations were detected in this test.
- 2. When detected, pathogenic or likely pathogenic variants are reported. Variants of uncertain significance or variants that are benign or likely benign are not reported.
- 3. The somatic or germline origin of the alteration identified cannot be verified due to the absence of control sample analysis (blood or saliva).
- 4. Variant classification interpretation is based on ACMG (American College of Medical Genetics and Genomics) guidelines for the interpretation of germline sequence variants (<u>PMID:25741868</u>).

10. HLA-I Polymorphism variation

Somatic HLA-I Zygosity

The anti-tumor activity of immune checkpoint inhibitor therapy is related to CD8+ T cells. The recognition of cancer cells by CD8+ T cells is achieved by HLA-I (human leukocyte antigen class I) molecules presenting tumor antigens.

HLA alleles have the characteristics of polymorphism and codominance. HLA-I loci subdivided into HLA-A, HLA-B and HLA-C. When a patient's HLA-I is homozygous at least one locus, this patient is expected to present less and less diverse tumor neoantigens to T cells compared to patients who are heterozygous at all three loci. In two cohorts, patients with heterozygous HLA-I showed longer OS than those with homozygous alleles, cohort1: HR=1.4 (1.02-1.9), P-value=0.036; cohort2: HR=1.31 (1.03- 1.7), P-value=0.028; among 32 patients with heterozygous HLA-I but at least one locus with LOH (loss of heterozygosity), patients with HLA-I LOH have a higher survival risk (P = 0.05, HR = 1.60, 95% CI 1.03-2.43), and these patients mainly with low mutation burden (P = 0.0006, HR = 3.68, 95% CI 1.64-8.23) (<u>PMID:29217585</u>).

Gene	Test Content	Result
HLA-A	Zygosity	Heterozygosity
HLA-B	Zygosity	Heterozygosity
HLA-C	Zygosity	Heterozygosity

Name:

Report No:

-

11. Clinical Trials to consider

PTEN associated clinical trials

NCT05554380 Ø		Phase 2
Title	Study of Chemotherapy Plus Ipatasertib for People With Solid Tumors With PTEN/AKT Mutations, A ComboMA Treatment Trial	
Treatment	Biopsy Biospecimen Collection Computed Tomography Ipatasertib Magnetic Resonance Imaging Paclitaxel	
Location	United States, Puerto Rico	

NCT02029001 Ø

Title	Adapting Treatment to the Tumor Molecular Alterations for Patients With Adv MyOwnSpecificTreatment	vanced Solid Tumors:
Treatment	Nilotinib (400 mg BID) Everolimus (10 mg QD) Sorafenib (400 mg BID) Lapatinib (1500 mg QD) Olaparib (300 mg BID) Durvalumab + Tremelimumab	Pazopanib (800 mg QD)
Location	France	

NCT03297606 Ø		Phase 2	
Title	Canadian Profiling and Targeted Agent Utilization Trial (CAPTUR)		
Treatment	Olaparib Dasatinib Nivolumab plus Ipilimumab Axitinib Bosutinib Crizotinib Palbociclib Sunitinib Temsirolimus Erlotinib Trastuzumab plus Pertuzumab Vemurafenib plus Cobimetinib Vismodegib Tucatinib		
Location	Canada		

NCT05432518 Ø		EARLY_Phase 1
Title Pilot Trial for Treatment of Recurrent Glioblastoma		
Treatment Afatinib Dasatinib Palbociclib Everolimus Olaparib		
Location	Canada	

NCT04997993 Ø		Phase 1
Title	e Leflunomide in Patients With PTEN-Altered Advanced Solid Malignancies	
Treatment	Leflunomide	
Location	United States	

Press here for a live search of clinical trials for PTEN

TERT associated clinical trials

G

Electronically Signed by

Genekor a company certified with ELOT EN ISO 9001:2015 (Cert. No 041150049), ELOT ISO/IEC 27001:2013 (Cert. No 048190009) and accredited under the terms of ELOT EN ISO 15189:2012 (Cert. No. 822)

Phase 2

Page 16 of 35

PRECISION INDIVIDUALIZED MEDICINE

Genekor Medical S.A. 52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:

Report No:

-

NCT06622434 Ø		Phase 1 Phase 2	
Title New Adjuvant Vaccine in Glioblastoma, a Phase 1/2a Study			
Treatment immunization			
Location France			

NCT04309552 @		Phase 1
Title	Tumor Hypoxia and Proliferation in Patients With High-Grade Glioma	
Treatment	18F-FMISO PET 18F-FLT PET	
Location	United States	

Press here for a live search of clinical trials for TERT

TP53 associated clinical trials

NCT05631886 Ø		Phase 1
Title	Combination of CAR-DC Vaccine and ICIs in Malignant Tumors	
Treatment	TP53-EphA-2-CAR-DC Abraxane Cyclophosphamide anti-PD-1 antibody Anti-CTLA4 Monoclonal Antibody	
Location	cation China	

NCT05432518 Ø		EARLY_Phase 1
Title Pilot Trial for Treatment of Recurrent Glioblastoma		
Treatment	Afatinib Dasatinib Palbociclib Everolimus Olaparib	
Location	Canada	

NCT05877599	Ø	Phase 1
Title	A Study of NT-175 in Adult Subjects with Unresectable, Advanced, And/or Metastatic Solid Turr HLA-A*02:01 and the TP53 R175H Mutation	ors That Are Positive for
Treatment	Autologous, engineered T Cells targeting TP53 R175H	
Location	United States	

NCT06329206	0	Phase 1
Title	A Phase Ia/Ib Study of GH2616 Tablet in Subjects With Advanced Solid Tumors	
Treatment	GH2616 Tablets	

Electronically Signed by

Location

Genekor Medical S.A. 52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.Ml. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

eport No:	
-----------	--

-

Press <u>here</u> for a live search of clinical trials for TP53

China

Name:

Report No:

12. Appendix

12.a. Immune checkpoint inhibitors predictive biomarkers

Tumor Mutation Burden (TMB)

Tumor mutation burden (TMB) refers to the number of somatic mutations in the coding region, usually indicated as the total number of somatic mutations within each MB tumor genome region. The clinical utility of TMB as a predictive biomarker for anti-PD1 immunotherapy has been established in the KEYNOTE-158 trial which led to the site-agnostic FDA-approval of pembrolizumab for metastatic/untreatable solid tumors with tissue TMB value≥10muts/MB (PMID: 32919526). The results of TMB are divided into three types: TMB-H, which means high tumor mutation burden; TMB-L, which means low tumor mutation burden; TMB-U, means that the sample does not meet the TMB assessment conditions (the tissue or pleural and ascites sample may fail to pass the TMB indicator calculation quality index due to low DNA quality and/or low tumor cell content).

Table S1. TMB interpretation and cut-offs.

Tumour Type	Immunotherapy agent	Study/Trial	TMB high cut-off	Type of benefit
	ТМВ	assessed through a multi-gene ass	ау	
NSCLC (1L or 2L)	Anti PD-L1	FIR/BIRCH [1]	13.5 Muts/Mb (1L) 17.1 Muts/Mb (2L)	ORR, OS, PFS
NSCLC (2L)	Anti PD-L1	POPLAR [1]	15.8 Muts/Mb	ORR, OS, PFS
NSCLC (2L)	Anti PD-L1	POPLAR/OAK [2-3]	16 Muts/Mb (blood)	OS, PFS
NSCLC (1L)	Anti PD-L1	BFAST and B-F1RST [4-6]	16 Muts/Mb (blood)	DOR, ORR, PFS, OS
NSCLC	Anti PD-L1	Rizvi <i>et al,</i> 2018 [7]	7.4 Muts/Mb	DCB, ORR, PFS
NSCLC	Anti PD-1	Singal <i>et al,</i> 2017 [8]	20 Muts/Mb	OS
NSCLC (1L)	Anti PD-1/Anti-CTL4	CheckMate 227 [9]	10 Muts/Mb	ORR, PFS
NSCLC (1L)	Anti PD-1/Anti-CTL4	CheckMate 568 [10]	10 Muts/Mb	ORR, PFS
NSCLC	various immunotherapies	Rozenblum <i>et al</i> , 2017 [11]	9.6 Muts/Mb	ORR
Melanoma	various immunotherapies	Johnson <i>et al,</i> 2016 [12]	23.1 Muts/Mb	ORR, OS, PFS
Bladder (1L or 2L)	Anti PD-L1	IMvigor 210 [13-14]	16 Muts/Mb	ORR, OS
Bladder (2L)	Anti PD-L1	IMvigor 211 [15]	9.65 Muts/Mb	OS
Multiple solid tumours	various immunotherapies	Goodman <i>et al</i> , 2017 [16]	20 Muts/Mb	ORR, OS, PFS
Multiple solid tumours (2L)	various immunotherapies	Bonta <i>et al,</i> 2017 [17]	8 Muts/Mb	ORR
Multiple solid tumours	anti-CTLA-4 or anti-PD-1	Samstein <i>et al</i> , 2019 [18]	varies across cancer types	OS
mTNBC	Anti PD-1	KEYNOTE-119 [19]	10 Muts/Mb	ORR, OS
All solid tumours	Anti PD-1	KEYNOTE-158 [20]	10 Muts/Mb	ORR

 Kowanetz M, Zou W, Shames D, et al. J Thorac Oncol 2017;12:S321-S322 | 2. Fabrizio D, Lieber D, Malboeuf C, et al Presented at the AACR Annual Meeting, Chicago, IL, 2018. | 3. Gandara DR, Paul SM, Kowanetz M, et al. Nat Med 2018;24:1441-8 | 4. Fabrizio D, Malboeuf C, Lieber D, et al. Ann Oncol 2017;28:v22-v24.
 S. Velcheti V, Kim ES, Mekhail T, et al. J Clin Oncol ;36:12001. | 6. Mok TSK, Gadgeel S, Kim ES, et al. Ann Oncol 2017;28:v460-v496 | 7. Rizvi H, Sanchez-Vega F, La K, et al. J Clin Oncol 2018;36:633-41. | 8. Singal G, Miller PG, Agarwala V, et al. Ann Oncol 2017;28:v403-427. | 9. Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Med 2018;378:2093-104. | 10. Ready N, Hellmann MD, et al. J Clin Oncol. 2019 Feb 20:JCO1801042 | 11. Rozenblum AB, Ilouze M, Dudnik E, et al. J Thorac Oncol 2017;12:258-68. | 12. Johnson DB, Frampton GM, Rioth MJ, et al. Cancer Immunol Res 2016;4:959-67 | 13. Balar AV, Galsky MD, Rosenberg JE, et al. Lancet

Electronically Signed by

Name:

Report No:

2017;389:67-76. | **14.** Rosenberg JE, Hoffman-Censits J, Powles T, et al. I. Lancet 2016;387:1909-20 | **15.** Powles T, Loriot Y, Ravaud A, et al Clin Oncol 2018;36(6_suppl):409 | **16.** Goodman AM, Kato S, Bazhenova L, et al. Mol Cancer Ther 2017;16:2598-608. | **17.** Bonta I, Isac JF, Meiri E, et al. J Clin Oncol 2017;35(15_suppl):e14579. | **18.** Samstein, R. M., et al. Nat Genet. 2019 Feb;51(2):202-206. | **19.** Winer, E. P., et al. J Clin Oncol 2020 38:15_suppl, 1013-1013 | **20.** Marabelle, A. et al. Annals of Oncology. 2019 Oct 1;30:v477-8.

Microsatellite Instability (MSI)

MSI (microsatellite instability, MSI) refers to the phenomenon that the sequence of microsatellites increases or decreases. Microsatellite (MS), also called Short Tandem Repeats (STRs) or Simple Sequence Repeat (SSRs), consists of repeated sequences of 1-6 nucleotides. This report uses NGS panel detection and is based on the 1021 Panel platform. The results of MSI are divided into three types: MSI-H, which means microsatellites are highly unstable; MSS, which means microsatellites are stable; MSI-U, which means that the sample does not meet the MSI evaluation conditions (tissues or pleural fluid samples may not have passed the MSI indicator calculation quality control due to the low DNA and/or content of tumor cells).

FDA approved pembrolizumab for solid tumors with MSI-H or dMMR (highly unstable microsatellites or MMR defects) and approved for MSI-H or dMMR colorectal cancer as the first-line treatment (<u>PMID: 35680043, 33264544</u>). FDA approved nivolumab for the treatment of children or adults who have progressed after 5-FU/oxaliplatin/irinotecan treatment with MSI-H or dMMR metastatic colorectal cancer. The NCCN clinical practice guidelines for colorectal cancer indicate that pembrolizumab/nivolumab can be used for the treatment of patients with dMMR/MSI-H colorectal cancer (PMID: 28734759).

Name:

Report No:

_

PD-L1 expression

Table S2. PD-L1 interpretation and cut-offs.

Cancer type	Therapy	PD-L1	Cut-off	We report
	Anti-PD-1 ^[1-4]	VENTANA (SP263)	1L TPS ≥ 50% 2L TPS ≥ 1%	%TPS
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	%TPS		
Non-Small Cell Lung Cancer (NSCLC)	Ant: DD 11 [5-7]	VENTANA (SP263)	$1L TPS \ge 50\%$ $2L TPS \ge 1\%$ $2L TPS \ge 1\%$ $1L TPS \ge 50\% or$ $IC \ge 10\%$ $1L TC \ge 50\% or$ $IC \ge 10\%$ $1L TPS \ge 1\%$ $1L CPS \ge 10$ $1L CPS \ge 10$ $1L CPS \ge 10$ $2L CPS \ge 1$ $1L CPS \ge 5$ $1L CPS \ge 5 or^*$ $1L CPS \ge 10$	%TPS
	Anti-PD-LI	VENTANA (SP142)		%TC/%IC
	Anti-PD-1 + Anti-CTLA-4 ^[8]	VENTANA (SP263)	1L TPS \geq 50% 2L TPS \geq 1% 1L TPS \geq 50% 1L TPS \geq 50% 1L TPS \geq 50% 1L TPS \geq 10% 1L TPS \geq 10 1L CPS \geq 10 1L CPS \geq 10 1L CPS \geq 1 1L CPS \geq 5 1L CPS \geq 10	%TPS
	Anti-PD-1 ^[9]	Dako 22C3	1L CPS ≥ 10	CPS
Urothelial Cancer (UC)	Anti-PD-1 ⁽¹⁹⁾	VENTANA (SP263)	1L TC≥ 1%	%TC
	Anti-PD-L1 [10]	VENTANA (SP142)	1L TPS \geq 50% 2L TPS \geq 1% 1L TPS \geq 50% 1L TPS \geq 50% 1L TPS \geq 50% 1L TPS \geq 50% 1L TPS \geq 10% 1L CPS \geq 10 1L TC \geq 5% 1L CPS \geq 10 1L CPS \geq 10 2L CPS \geq 1 1L CPS \geq 10 1L CPS \geq 10 1L CPS \geq 5 1L CPS \geq 5 1L CPS \geq 5 or* 1L CPS \geq 10	%IC
riple Negative Breast Cancer (TNBC)	Anti-PD-L1 [11]	VENTANA (SP142)	1L IC ≥ 1%	%IC
Triple Negative Breast Cancer (TNBC)	Anti-PD-1 ^[12] + chemotherapy	Dako 22C3	1L CPS ≥ 10	CPS
Cervical cancer	Anti-PD-1 ^[16]	Dako 22C3	2L CPS ≥ 1	CPS
Head and Neck Squamous Cell Carcinoma (HNSCC)	Anti-PD-1 ^[14,15]	Dako 22C3		CPS and %TPS
Gastric cancer (adenocarcinoma) (HER-2 Positive)	Anti-PD-1 [13,20]	Dako 22C3	1L CPS ≥ 1	CPS
Gastric cancer (adenocarcinoma) (HER-2 Negative)	Anti-PD-1 18, 20)	Dako 22C3	1L CPS ≥5	CPS
Oesophageal (Adenocarcinoma and squamous carcinoma)	Anti-PD-1 ^[17]	Dako 22C3	1L CPS ≥ 10	CPS
Oesophageal (squamous carcinoma)	Anti-PD-1 ^[17]	Dako 22C3	1L TC ≥ 1%	%TC
Oesophageal (Adenocarcinoma) (HER-2 Negative)	Anti-PD-1 ^[17]	Dako 22C3	1L CPS ≥ 5	CPS
Gastro-oesophageal junction Adenocarcinoma (HER-2 Negative)		Dako 22C3		CPS
Gastro-oesophageal junction Adenocarcinoma (HER-2 Positive)	Depending on PD-L1 inhibitor	Dako 22C3	1L CPS ≥ 1	

1. Reck M, et al N Engl J Med. 2016 Nov 10;375(19):1823-1833 | 2. Herbst RS, et al Lancet. 2016 Apr 9;387(10027):1540-50. | 3. Brahmer J, et al N Engl J Med. 2015 Jul 9;373(2):123-35. | 4. Borghaei H, et al N Engl J Med. 2015 Oct 22;373(17):1627-39. | 5. Antonia SJ, et al N Engl J Med. 2018 Dec 13;379(24):2342-2350. | 6. Sezer A, et al Lancet. 2021 Feb 13;397(10274):592-604. | 7. Herbst RS, et al N Engl J Med. 2018 Dec 13;379(24):2342-2350. | 6. Sezer A, et al Lancet. 2021 Feb 13;397(10274):592-604. | 7. Herbst RS, et al N Engl J Med. 2019 Nov 21;381(21):2020-2031. | 9. Balar AV, et al Lancet Oncol. 2017 Nov;18(11):1483-1492. | 10. Balar AV, et al Lancet. 2017 Jan 7;389(10064):67-76. | 11. Schmid P, et al N Engl J Med. 2018 Nov 29;379(22):2108-2121. | 12. Cortes J, et al 2020 J Clin Oncol. 2020;38(suppl 15):1000. | 13. Bang YJ, et al 2019 Mar 25. doi: 10.1007/s10120-018-00909-5. | 14. Cohen EEW, et al Lancet Oncol. 2019 J an 12;393(10167):156-167. | 15. Rischin D, et al 2019 J Clin Oncol 37, (suppl; abstr 6000) | 16. Chung HC, et al 2018 J Clin Oncol 36:15_suppl, 5522-5522 | 17. Kojima T, et al J Clin Oncol. 2020;38(3):4138-4148. | 18. Yelena Y Janjigian et al., 2021. 10.1016/ S0140-6736(21)00797-2 | 19. 2021 Jun 3;384(22):2102-2114. doi: 10.1056/NEJMoa2034442.20. Yelena Y. Janjigian, et al Nature. 2021 December ; 600(7890): 727-730. doi:10.1038/s41586-021-04161-3

TPS : Tumor Proportion Score =	$\frac{\# PD-L1 \text{ positive tumor cells}}{Total \# PD-L1 \text{ positive} + PD-L1 \text{ negative tumor cells}} \times 100$	TC: tumor cell
CPS : Combined Positive Score =	<pre>#PD-L1 staining cells (tumor cells,lymphocytes,macrophages) Total # of viable tumor cells</pre>	IC: immune cell

Pembrolizumab

Pembrolizumab is a highly selective IgG4-kappa humanized monoclonal antibody against PD-1 receptor. It was generated by grafting the variable sequences of a very high-affinity mouse antihuman PD-1 antibody onto a human IgG4-kappa isotype with the containing a stabilizing S228P Fc mutation. It contains 32 cysteine residues and the complete folded molecule includes 4 disulfide linkages as interchain bonds and 23 interchain bonds. It was firstly approved by the FDA on September 4, 2014, for the treatment of metastatic malignant melanoma. This is the first approved therapy against PD-1. Its approval in melanoma was extended to several countries such as Australia, Israel, Korea, Macau, the European Union and the United Arab Emirates. On June 12, 2018, Pembrolizumab was approved for the treatment of cervical cancer under the status of

Electronically Signed by

PRECISION INDIVIDUALIZED MEDICINE

_

52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.Ml. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:

1

Report No:

accelerated approval. Pembrolizumab is indicated for the treatment patients with unresectable or metastatic melanoma; as a single therapy, pembrolizumab is indicated for first-line treatment of patients with metastatic non-small cell lung cancer whose tumors have high PD-L1 expression as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations; as a single therapy, pembrolizumab is indicated for first-line treatment of patients with metastatic non-small cell lung cancer whose tumors express PD-L1 (TPS>1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to treatment. The following indications present the status of accelerated approval based on tumor response rate and durability of the response and thus, the approval of this indications are contingent upon verification and description of clinical benefit in confirmatory trials; patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS > 1) as determined by an FDA-approved test; in combination with pemetrexed and carboplatin, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer ; patients with recurrent or metastatic head and neck squamous cell carcinoma with disease progression on or after platinum-containing chemotherapy ; treatment of adults and pediatric patients with refractory classical Hodgkin lymphoma or who have relapsed after 3 or more prior lines of therapy ;treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma or who have relapsed after 2 or more prior lines of therapy ;treatment of patients with locally advanced or metastatic urothelial carcinoma who are not eligible for cisplatincontaining chemotherapy ;patients with locally advanced or metastatic urothelial carcinoma who have disease progression during or following platinum-containing chemotherapy ;treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high or mismatch repair deficient with solid tumors that have progressed following previous treatment and colorectal cancer that has progressed following treatment with fluoropyrimidine, oxaliplatin, and irinotecan ;patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction adenocarcinoma whose tumors express PD-L1 (CPS >1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy.

Atezolizumab

DrugBank Ø

Atezolizumab is a humanized monoclonal antibody used to prevent the interaction of PD-L1 and PD-1, removing inhibition of immune responses seen in some cancers. This medication is reserved for patients whose tumors express PD-L1, cannot receive platinum based chemotherapy, or whose tumors do not respond to platinum based chemotherapy. Atezolizumab was granted FDA approval on 18 October 2016. Atezolizumab is indicated to treat locally or advanced metastatic urothelial carcinoma in patients ineligible for cicplatin-containing chemotherapy with tumors expressing PD-L1, in patients ineligible for cisplatin-containing chemotherapy irrespective of PD-L1, have disease progression following platinum containing chemotherapy, or have disease progression within 12 months of neoadjuvant or adjuvant chemotherapy. Atezolizumab is also indicated first line for non small cell lung cancer in combination with bevacizumab, paclitaxel, and carboplatin with no EGFR or ALK genomic abnormalities. It can be used in patients with disease progression during or after platinum containing chemotherapy even if they have EGFR and ALK abnormalities. Atezolizumab is indicated in combination with paclitaxel protein-bound to treat locally advanced or metastatic triple negative breast cancer expressing PD-L1. Finally, atezolizumab is indicated in combination with carboplatin and etoposide as first line treatment for extensive stage small cell lung cancer.

Durvalumab

DrugBank Ø

Durvalumab is a human monoclonal antibody that blocks programmed death ligand 1 (PD-L1), or CD 274. In May, 2017 it received FDA approval for previously treated patients with locally advanced or metastatic cancer in the urinary system (as Imfinzi). It is shown to be effective in patients with continued disease progression after the platinum-based chemotherapy. This drug has a relatively tolerable safety profile and its structural modification advantageously prevents the induction of antibody-dependent cytotoxicity (ADCC) or complement-dependent cytotoxicity

Electronically Signed by

Name:

Report No:

(CDC). Durvalumab is indicated for patients with urothelial carcinoma, such as urinary bladder, urethra or ureter cancer. Patients with prolonged disease progression due to failed platinum-based chemotherapy such as cisplatin and carboplatin are most likely to benefit from durvalumab treatment. Its clinical effectiveness is especially enhanced in PD-L1-positive patient groups.

Cemiplimab

DrugBank ©

Cemiplimab is a fully human monoclonal antibody that works against programmed death receptor-1 (PD-1), which is a negative regulator of T cell function. By blocking PD-1, cemiplimab works to enhance T cell-mediated antitumour responses. Cemiplimab was first approved by the FDA on September 28, 2018, as the first FDA-approved treatment for advanced cutaneous squamous cell carcinoma (CSCC). It was later approved to be used in basal cell carcinoma and non-small non-small cell lung cancer. Cemiplimab was also approved by the European Commission on June 28, 2019. In October 2022, the EMA's Committee for Medicinal Products for Human Use (CHMP) recommended cemiplimab be granted marketing authorization for the treatment of cervical cancer. Cemiplimab is indicated treat: to - Locally advanced or metastatic cutaneous squamous cell carcinoma (mCSCC) in patients who are not candidates for curative surgery or curative radiation.

- Locally advanced basal cell carcinoma (laBCC) in previously treated patients with a hedgehog pathway inhibitor or for whom a hedgehog pathway inhibitor is not appropriate. - Metastatic basal cell carcinoma (mBCC) in patients who were previously treated with a hedgehog pathway inhibitor or for whom a hedgehog pathway inhibitor is not appropriate. This indication is approved under accelerated approval based on tumour response rate and durability of response. Continued approval for mBCC may be contingent upon verification and description of clinical benefit. - Locally advanced non-small cell lung cancer (NSCLC) in combination with platinum-based chemotherapy for the firstâ€● line treatment of adults with no EGFR, ALK or ROS1 aberrations, who are not candidates for surgical resection or definitive chemoradiation. It is also indicated to treat NSCLC combination with platinum-based chemotherapy first-line treatment metastatic in as in adults. - Locally advanced or metastatic NSCLC as monotherapy for the first-line treatment of adults whose tumours have high PD-L1 expression [Tumor Proportion Score (TPS) ≥ 50%] as determined by an FDA-approved test, with no EGFR, ALK or ROS1 aberrations. Patients with locally advanced NSCLC candidates for surgical definitive chemoradiation. must not be resection or - Recurrent or metastatic cervical cancer in adults with disease progression on or after platinum-based chemotherapy.

Nivolumab

<u>DrugBank</u> &

Nivolumab is a fully human IgG4 antibody targeting the immune checkpoint programmed death receptor-1 (PD-1). This molecule was produced entirely on mice and grafted onto human kappa and IgG4 Fc region with the mutation S228P for additional stability and reduced variability. It was originally FDA approved on December 22, 2014. Since this approval, nivolumab has been approved for a variety of other uses related to cancer therapy. On 2017, was notably approved for the treatment of hepatocellular carcinoma and on July 11, 2018, the FDA approved this agent in combination with low doses of for the treatment of MSI-H/dMMR metastatic colorectal cancer. Nivolumab is indicated to treat unresectable or metastatic melanoma, adjuvant treatment of melanoma, metastatic non-small cell lung cancer, small cell lung cancer, advanced renal cell carcinoma, classical Hodgkin lymphoma, squamous cell carcinoma of the head and neck, urothelial carcinoma, microsatellite instability-high or mismatch repair deficient metastatic colorectal cancer, and hepatocellular carcinoma.

Ipilimumab

<u>DrugBank</u> Ø

Ipilimumab is a fully humanized IgG1 monoclonal antibody that blocks cytotoxic T lymphocyte antigen-4 (CTLA-4). Cytotoxic Tlymphocyte antigen-4 (CTLA-4) is an inhibitory molecule that competes with the stimulatory CD28 for binding to B7 on antigen presenting cells.

Name:

Report No:

_

CTLA-4 and CD28 are both presented on the surface of T-cells3 Blocking CTLA-4 removes an inhibitory signal from reducing the activity of T lymphocytes. Ipilimumab was granted FDA approval on 25 March 2011. Ipilimumab is indicated to treat unresectable or metastatic melanoma, as an adjuvant in the treatment of cutaneous melanoma, to treat microsatellite-high or mismatch repair deficient metastatic colorectal cancer, or to treat hepatocellular carcinoma. Ipilimumab with nivolumab is indicated to treat advanced renal cell carcinoma. Additionally, FDA has approved the use of nivolumab plus ipilimumab given with 2 cycles of platinum-doublet chemotherapy as a first-line treatment for adult patients with metastatic or recurrent non-small cell lung cancer (NSCLC) with no EGFR or ALK genomic tumor aberrations.

Name:

Report No:

12.c. Methodology

DNA was extracted from the sample under investigation using the MagMax Total Nucleic Acid Isolation Kit (ThermoFisher). A capture based targeted next generation sequencing (NGS) analysis was performed, using the Oncology Multi-Gene Variant Assay (GenePlus) which is a qualitative in vitro diagnostic test that detects variants in 1021 tumor-related genes and gene rearrangements / fusions in 38 genes. Sequencing was carried out on an MGI sequencing platform (DNBSEQ-G400). The analysis includes the entire exon regions of 312 genes, introns/promoters/fusion breakpoint regions of 38 genes and partial coding exons of 709 genes. The test also reports 30+ immune response biomarkers, including Tumor Mutational Burden (TMB) score and Microsatellite Instability (MSI) status.

Sequencing data are analyzed through bioinformatics pipeline for variant calling and interpretation using the Gene+Box data analysis and management system.

Sensitivity: Positive reference standards are tested with the assay, all corresponding mutation sites can be accurately detected, and the positive percent agreement (PPA) for all variants (SNVs, Indels, fusions and CNVs) assessed was 100%. Specificity: Negative reference standards are tested with the assay, and the negative percent agreement (NPA) of SNVs, Indels, fusions and CNVs was 100%.

Limit of Detection (LoD): The limit of detection (LoD) of this assay is listed in the table below. The LoD is based on as low as 50 ng of gDNA input for library preparation. The assay can also be used to test the microsatellite instability (MSI) with a tumor cell content as low as 10%.

Variant Type	Limit of Detection
Single nucleotide variations (SNV)	Hotspot: VAF ≥2%; Non-hotspot: VAF ≥5%
Insertions/deletions (Indel)	Hotspot: VAF ≥2%; Non-hotspot: VAF ≥5%
Fusion (or rearrangement)	VAF ≥2%

PD-L1 expression by IHC

The level of expression of the PD-L1 protein is defined as A. the percentage of viable tumor cells (TC) showing partial or complete membrane staining at any intensity and B. as the percentage of Tumor Infiltrating Immune Cells (IC) showing staining at any intensity.

VENTANA SP263 (CE IVD) by IHC is a qualitative immunohistochemical assay using Monoclonal Mouse Anti-PD-L1, Clone SP263, intended for use in the detection of PD-L1 protein in formalin-fixed, paraffin-embedded (FFPE) tissue, on a VENTANA BenchMark Series automated staining instrument. The specimen submitted for testing should contain at least 100 viable TC to be considered adequate for evaluation.

Disclaimer

- 1. This test is mainly used to assist clinical decision-making and the result does not represent clinical decision.
- 2. The test should be interpreted by combining the actual patient context. The medication information provided only on the basis of genetic test results, and the actual medication should follow the physician's instructions.
- 3. The clinical trials only present partial relevant clinical recruitment trials. For more comprehensive and updated information, please refer to the website: https://clinicaltrials.gov/.

Electronically Signed by

Name:

Report No:

- 4. As evidence on variants and drugs evolves, previous classifications may later be modified. The interpretation of a variant is based on current available evidence.
- Sequence variants were reported using Human Genome Variation Society (HGVS) nomenclature. Classification and interpretation of variants follows guidelines of American College of Medical Genetics and Genomics (ACMG), Association of Molecular Pathology (AMP), American Society of Clinical Oncology (ASCO) and College of American Pathologists (CAP).
- 6. Translocations detected at the DNA level are confirmed by an RNA-based NGS method.
- 7. Database and references used: Reference genome (GRCh37), annotation using A Locus Reference Genomic (LRG), database referencing 1000G (phaseIII-ucsc), EXAC (0.3.1), dbSNP (147), PolyPhen2/SIFT (ensdb v73), PhyloP (2013-12-06), Clinvar (2018-8) and Cosmic(V80).

Limitations

- 1. Limited tissue detection may not represent the whole DNA variations of lesions because of tumor heterogeneity.
- 2. Scientific data show that not all patients carry genomic variations that are associated with targeted drug, therefore not all subjects can be matched with targeted therapies or clear resistance mechanism.
- 3. Genetic variation beyond the detection range of this test or some non-gene mutation related factors such as drug interactions may affect the clinical effects of drugs.
- 4. The detection could not distinguish between somatic mutations and germline mutations effectively without control sample analysis.
- Fraction of base quality ≥ Q30: The proportion of base quality in sequencing data that reaches or exceeds Q30, indicating that the probability of base recognition accuracy rate exceeds 99.9%.
- 6. Every molecular test has an internal 0.5-1% chance of failure. This is due to rare molecular events and factors related to the preparation and analysis of the samples.

Name:

Report No:

_

12.d. Quality Control Results

Quality Control Index	Result	Criterion	
	Average effective sequencing depth ¹	1011	≥ 500
Sequencing Quality Assessment	Fraction of target covered with $\ge 50x^2$	100%	≥99%
	Fraction of base quality $\ge Q30^3$	94%	≥80%
Tumor cell content ⁴	·	85%	>20%
Overall Assessment ⁵		PASS	

Note :

- Average effective sequencing depth: Average sequencing depth on target without duplicated reads. 1.
- Fraction of target covered with \geq 50x: The proportion of bases that sequencing depth reach or above 50x on target, this index reflecting 2. the coverage uniformity of sequencing.
- 3. Fraction of base quality \ge Q30: The proportion of base quality in sequencing data that reach or above Q30, that is the probability of base recognition accuracy rate exceeds 99.9%.
- Overall A tumor cell content percentage of ≥ 20% is recommended for the efficient detection of somatic alterations in the sample analyzed. 4.
- Overall Assessment: The quality control overall assessment results are divided into two levels: "PASS" and "RISK". When the overall quality 5. assessment result is "RISK", 94-96% of coverage was achieved in the genes analysed, hence there is a small range where clinical actionable variations could be undetected.

Genekor Medical S.A. 52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:

Report No:

_

12.e. Genes Analyzed

_

312 genes in	ncluding all exon	regions and ava	ilable for detect	ing SNV / Indel /	' CNV				
ABL1	ACVR1B	AKT1	AKT2	АКТЗ	ALK	APC	AR	ARAF	ARID1A
ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2
AXL	B2M	BAP1	BARD1	BCL2	BCL2L1	BCOR	BLM	BMPR1A	BRAF
BRCA1	BRCA2	BRD4	BRIP1	втк	CARD11	CASP8	CBFB	CBL	CCND1
CCND2	CCND3	CCNE1	CD274	CDC73	CDH1	CDK12	CDK4	CDK6	CDK8
CDKN1A	CDKN1B	CDKN2A	CDKN2B	CDKN2C	CEBPA	CHEK1	CHEK2	CIC	CREBBP
CRKL	CSF1R	CTCF	CTNNA1	CTNNB1	CUL3	CYLD	DAXX	DDR1	DDR2
DICER1	DNMT3A	DOT1L	EGFR	EIF1AX	EMSY	EP300	EPAS1	EPCAM	EPHA2
EPHA3	EPHA5	EPHB1	EPHB6	ERBB2	ERBB3	ERBB4	ERCC1	ERCC3	ERCC4
ERCC5	ERG	ERRFI1	ESR1	EXT1	EXT2	EZH2	FAM123B	FAM175A	FANCA
FANCC	FANCD2	FANCE	FANCF	FANCG	FANCL	FANCM	FAS	FAT1	FAT2
FBXW7	FGF19	FGF3	FGF4	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN
FLT1	FLT3	FLT4	FOXA1	FOXL2	FOXP1	FUBP1	GALNT12	GATA3	GNA11
GNAQ	GNAS	GRIN2A	GRM3	HDAC1	HGF	HNF1A	HOXB13	HRAS	IDH1
IDH2	IFNG	IFNGR1	IGF1R	IKBKE	IKZF1	IL7R	INPP4B	IRF2	IRS2
JAK1	JAK2	JAK3	JUN	KDM5A	KDM5C	KDM6A	KDR	KEAP1	кіт
KRAS	LRP1B	MAF	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAPK1	MAX	MCL1
MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MLH3	MLL
MLL2	MLL3	MPL	MRE11A	MS4A1	MSH2	MSH3	MSH6	MST1R	MTOR
MUTYH	MYC	MYCL1	MYCN	MYD88	NBN	NCOR1	NF1	NF2	NFE2L2
NFKB1A	NKX2-1	NOTCH1	NOTCH2	NOTCH3	NPM1	NRAS	NSD1	NTHL1	NTRK1
NTRK2	NTRK3	PALB2	PARK2	PARP1	PAX5	PBRM1	PCK1	PDCD1	PDCD1LG2
PDGFRA	PDGFRB	PDK1	PIK3CA	РІКЗСВ	PIK3CG	PIK3R1	PIK3R2	PMS1	PMS2
POLD1	POLE	POT1	PPP2R1A	PRDM1	PRKAR1A	PTCH1	PTCH2	PTEN	PTPN11
PTPRD	RAC1	RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1
RARA	RB1	RBM10	RECQL	RECQL4	RET	RHOA	RICTOR	RINT1	RNF43
ROS1	RPTOR	RUNX1	SDHA	SDHAF2	SDHB	SDHC	SDHD	SERPINB3	SERPINB4
SETD2	SF3B1	SLX4	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1
SOX2	SOX9	SPOP	SRC	STAG2	STAT3	STK11	SUFU	SYK	ТВХЗ
TCF7L2	TERC	TET2	TGFBR2	TMEM127	TMPRSS2	TNFAIP3	TNFRSF14	TOP1	TOP2A
TP53	TSC1	TSC2	TSHR	U2AF1	VEGFA	VHL	WRN	WT1	XPO1
XRCC2	ZMAT3								

Name:

_

Report No: -

Genekor Medical S.A.

0007856001000

52, Spaton Ave., 15344, Gerakas, Athens, Greece, G.E.MI. nr:

info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148

Scientific Director: George Nasioulas PhD

EZRFGFR1FGFR2FGFR3KIF58NITMAML2METMSH2MYH2	38 genes inclu	uding specific int	ron, promoter a	nd fusion break	point regions ar	nd available for o	detecting gene r	earrangement o	or fusion	
MYCL1NCOA4NOTCH2NTRK1NTRK2NTRK3PDGFRARAF1REF1RE53RSP02SDC4SLC3AA2TERTTFE3TMPRS52TPM3PMS2IIIRSP03SDC4SLC3AA2TERTTFE3TMPRS52TPM3PMS2III	ALK	BCL2L11	BRAF	BRCA1	BRD4	CD74	EGFR	EML4	ERG	ETV6
RSP02SDC4SLC34A2TERTEF3TMPRS2TPM3PM32PLM3PLM32PLM3PLM32PLM34	EZR	FGFR1	FGFR2	FGFR3	KIF5B	кіт	MAML2	MET	MSH2	MYC
No.No	MYCL1	NCOA4	NOTCH2	NTRK1	NTRK2	NTRK3	PDGFRA	RAF1	RET	ROS1
ABCA13ABCE1ABCC1ABCC1ABCC2ABCG2ABL2ACACAACIN1ACTBACTG1ACTG2ACVR2AACVR1ADAM29ADAMT55ADCY1AFF1AFF2AFF3AHNAKAKAP9ALBAMOTANGPT1ANK3ANKRD11ANKRD30AANKRD30BAPEX1APOBEC3BARAP3ARFEF1AFFEF2ARHCAP29ARHGAP35ARID4BANID5BANT1ASCL2APOBEC3BBRAP2ARFEF1AFFEF2ARHCAP29ARHGAP35ARID4BANID5BANT1ASCL3ASM11ASM1ASPMASTN1ASXL2ATICATP11BATP12AATP1A1ATP2B3BAC2BBCG3BS90BCS1BLI0BCL1BBCL21BBCL2A1BCL11BBCL2A1BCL11BCL3BAC2GBCR1BRIABUB1C150r23C150r55C10AC15C30r70C70r53CC0616BCCNA1COB3CT3CCT5CCT6BCD22C033CD5LCD14CD54CCN11CM12CM13CM13C101C101C102A1CD5A2C015ACC064CCN11CM131CM12CT15C16BCD21C015A1CD5A2C015A3CC0765CP51CH131CM14CM14CM14CM14CM14CM14CM14CC0168CCN11CM141CM14CM14CM14CM14CM14CM14CM14CC0164CM131CM141CM141CM14<	RSPO2	SDC4	SLC34A2	TERT	TFE3	TMPRSS2	TPM3	PMS2		
ABCA13ABCE1ABCC1ABCC1ABCC2ABCG2ABL2ACACAACIN1ACTBACTG1ACTG2ACVR2AACVR1ADAM29ADAMT55ADCY1AFF1AFF2AFF3AHNAKAKAP9ALBAMOTANGPT1ANK3ANKRD11ANKRD30AANKRD30BAPEX1APOBEC3BARAP3ARFEF1AFFEF2ARHCAP29ARHGAP35ARID4BANID5BANT1ASCL2APOBEC3BBRAP2ARFEF1AFFEF2ARHCAP29ARHGAP35ARID4BANID5BANT1ASCL3ASM11ASM1ASPMASTN1ASXL2ATICATP11BATP12AATP1A1ATP2B3BAC2BBCG3BS90BCS1BLI0BCL1BBCL21BBCL2A1BCL11BBCL2A1BCL11BCL3BAC2GBCR1BRIABUB1C150r23C150r55C10AC15C30r70C70r53CC0616BCCNA1COB3CT3CCT5CCT6BCD22C033CD5LCD14CD54CCN11CM12CM13CM13C101C101C102A1CD5A2C015ACC064CCN11CM131CM12CT15C16BCD21C015A1CD5A2C015A3CC0765CP51CH131CM14CM14CM14CM14CM14CM14CM14CC0168CCN11CM141CM14CM14CM14CM14CM14CM14CM14CC0164CM131CM141CM141CM14<										
ACTG1ACTG2ACVR2AACVR1LADAM29ADAMT55ADCY1AFF1AFF2AFF3AHNAKAKAPALBAMOTANGPT1ANK3ANKRD10ANKRD300ANKRD300APKRD300APOBEC3BARAP3ARFGEF1ARGEF2ARHGAP29ARHGAP35ARID4BARID5BARITASCL4ASH1LASMTASPASTN1ASX12ATCATP11BATP12AATP1A1ATP2B3BA22BBC3BS9BCA51BCL10BCL11ABCL1BBCL2A1BCL211BCL31BCL6BC19BCORL1BCRBIR3BMPR2BNC2BPTFBC32BC363BRSK1BRWD1BTLABUB1C15orf23C15orf55C1QAC1SLC3orf70C7orf33CBOrd4CCN18CCN18CCT3CCT66CCT62C033CD5LCD74CDC16CCN11CH18CH12CH13C1D1CH10CH10CH10CH10CH10CD14CD111CH13CH13C1TACD13C12A1C05A1C05A2C05A3CD74CH11CH18CH19C1TACD14C1D1C1D4C1D4C1D5AC1D3CD14CD111CH18CH19C1TACD14C1C5AC5A1C5A3C5A3C5A3CD74CH11CH18CH19C1TACD14C1D4C1D5AC1D43C1D4C1D5AC1D5AC1D5ACD75CP51CF18CF19	709 genes inc	luding partial ex	on regions and a	available for det	ecting SNV / Inc	lel				
AHAAKAKAP9ALBAMOTANGPT1ANK3ANKRD11ANKRD30AANKRD30AANKRD30AAPX1APOBEC3BARAP3ARFGEF1ARFGEF2ARHGAP29ARHGAP35ARID4BARID5BANKRD30AANKRD30BAPX1ASH1ASMTASFMASTN1ASX12ATICATP11BATP12AATP1A1ATP2B3BAZ2BBBG3BEG3BEG3BCAS1BCL10BCL11ABCL11BBCL2A1BCL211BCL3BAC2BBRC3BS9BCAS1BCL10BCL11ABCL11BBCL2A1BCL211BCL3BAC2BBRG3BS9BCAS1BCL10BCL1ABCL1BBCL2A1BCL311BCL3BAC2BBRC3BS9BCAS1BCL10BCL1ACT1BCT1ABCL31BCC3BR03BAC2DBRD3BCAS1BCC1CD1ACC11BBCL2A1BCL211BCL31BCL31BAC2DBRW1BTLABUB1CD174CAS72C1QAC1SC3orf70C7orf33CBO11CD113CD113CD113CAS12CD22CB1BCB1A1CD14CD14CD04CD113CD113CD113CD114CD141C1SA1C01542C0153CD13CD04CD113CD113CD113CD114CD121CD1541C01542C01543C01543CD04CD113CD113CD114CD121CD131CD1541CD1541CD1541CD1541CD13CD113 <td>ABCA13</td> <td>ABCB1</td> <td>ABCC1</td> <td>ABCC11</td> <td>ABCC2</td> <td>ABCG2</td> <td>ABL2</td> <td>ACACA</td> <td>ACIN1</td> <td>АСТВ</td>	ABCA13	ABCB1	ABCC1	ABCC11	ABCC2	ABCG2	ABL2	ACACA	ACIN1	АСТВ
APOBEC3BARAP3ARFGEF1ARFGEF2ARHGAP29ARHGAP35ARI04BARI05BARNTASCL4ASH1ASMTASPMASTN1ASX2ATCATP11BATP12AATP1A1ATP2A3BAZ2BBBG3BBS9BCAS1BCL10BCL11ABCL1BBCL2A1BCL2111BCL3BCL6BC19BCORL1BCRBIR3BMPR2BNC2BPTFBRD2BRD3BRSK1BRW01BTLABUB1C15or23C15or55C10AC15Gor70C7or53CC016BCCNA1CAM2CALRCAMTA1CAS21CBLBCBB1CBB3CC016CCCNA1CMD2CALRCAMTA1CAS21CB1ACBB1CBB3CC016BCCNA1CMD3CT3CT5CT6BCD22CD33CD5LCD74CD4CM11CM18CT3CT5CT6BCD22CD33CD5LCD74CD4CM11CM18CM17CMTA1CAS2CB1BCD43CD5ACD74CD4CM11CM18CM17CM1ACD14CACA1CD43CD5ACD5ACD5ACD74CM11CM18CM17CM1ACD14CD2A1CD5A1CD5A2CD5ACD74CM11CM1A2CM1A1CU1A1CD4ACD4ACD4ACD4ACD4ACD74CM14CM1A2CM1A1CU1A1CD2A1CD5A1CD5A2CD5A3CD75CP51CR1A </td <td>ACTG1</td> <td>ACTG2</td> <td>ACVR2A</td> <td>ACVRL1</td> <td>ADAM29</td> <td>ADAMTS5</td> <td>ADCY1</td> <td>AFF1</td> <td>AFF2</td> <td>AFF3</td>	ACTG1	ACTG2	ACVR2A	ACVRL1	ADAM29	ADAMTS5	ADCY1	AFF1	AFF2	AFF3
ASH1LASMTLASPMASTN1ASXL2ATICATP118ATP12AATP1A1ATP12BBA22BBBC3BBS9BCAS1BCL10BCL11ABCL11BBCL2A1BCL2L11BCL3BCL6BC19BCORL1BCRBIR3BMPA2BNC2BPTFBR02BR03BR03BRS4BRWD1BTLABUB1C15orf23C15orf55C1QAC1SC3orf70C7orf53CR0r14CANA1ECAM2CALRCAMTA1CASP1CASQ2GLBCBR1CBR3CCD168CNA1CMB3CT3CT5CT6BCD22C033C5LCD74CD4CD11CD118CD13CT5CT6BCD22C033C5LCD74CD5CH11CD184CD13CD14CD12CD3CD5LCD74CD74CD4CD11CD118CD13C117C117C1010C12NC12NC117C103CD5CP11CD11CD11CD11CD14CD12CD5ACD5AC015ACD15ACD5CP11CD11CD11CD11C117C117C111C117C111 <t< td=""><td>AHNAK</td><td>AKAP9</td><td>ALB</td><td>AMOT</td><td>ANGPT1</td><td>ANK3</td><td>ANKRD11</td><td>ANKRD30A</td><td>ANKRD30B</td><td>APEX1</td></t<>	AHNAK	AKAP9	ALB	AMOT	ANGPT1	ANK3	ANKRD11	ANKRD30A	ANKRD30B	APEX1
BA22BBB63BB59BCA51BCL10BCL111BCL111BCL2A1BCL2L11BC12BC164BC19BCORL1BCRBIRG3BMPR2BNC2BPTFBRD2BRD3BRD3BR514BRW10BTLABUB1C15orf23C15orf55C1QAC1SC3orf70C7orf33C8orf34CACNA1ECAMD2CALRCAMTA1CASP1CASQ2CBLBCBR1CBR1CBR3CCD168CNA1CNB3CT3CT5CT6BD22CD33CD5LCD74CD4CD111CD181CD123CD13CHD1CHD1CHD4CHD6CH08CD74CH11CD184CH13CIT3CT6TCD141CL5PNCITCCN073CD74CH11CNTNCNTNAP1CNTNAP5COLA1COL2A1CD5A1CD5A1CD5A2CD5A3CD74CNTN1CNTNAP1CNTNAP5COLA1COL2A1CD5A1CD5A1CD5A3CD5A3CD74CNT14CNTNACNTNAP1CNTNAP5COLA1CD2A1CD5A1CD5A3CD5A3CD74CNTN1CNTNAP1CNTNAP1CNTNAP1CNTACNT1CD5A1CD5A3CD5A3CD5A3CD74CNT14CNTNACNTNAP1CNTNAP1CNT1CNT1CD5A1CD5A3CD5A3CD5A3CD5A3CD5A3CD5A3CD5A3CD5A3CD5A3CD5A3CD5A3CD5A3CD5A3CD5A3CD5A3CD5A3CD5A3<	APOBEC3B	ARAP3	ARFGEF1	ARFGEF2	ARHGAP29	ARHGAP35	ARID4B	ARID5B	ARNT	ASCL4
BC164BC194BCR11BCRBIRC3BMP2BNC2BPTFBRD2BRD3BRD3BRS14BRWD1BTLABUB1C15of23C15of55C1QAC15Gorf70C7of53CR06734CACNA1ECADM2CALRCAMTA1CASP1CASQ2CBLBCBR1CBR3CD7CC0168CCNA1CCNB3CCT3CCT5CCT6BCD22CD33CD5LCD74CDACDH11CDH18CDH23CDK13CHD1CHD1CHD4CHD6CHD3CDACHFRCH311CHN1CITACLD18C1P1CLSPNCLTCCN03CN074CNTN1CNTN5CNTNAP1CNTNAP5COL1A1COL2A1COL5A1CD5A3COL5A3CN074CP51CRIPAKCRLP2CRNK11CRT1CSF1CSF3RCSM010CMD3CN174CNTN3CT1A4CTNN2CTNN1CUX1CXCR4CYBACYP19A1CYP141CYP191CY2A3CY2C8CYP2D6CYP3A4CYP3A5DCCDXAB1DNM2DNM11CYP191CY2A3CY2C8CYP2D6CYP3A4CYP3A5DCCDXAB1DNM2DNM11DNT35DAYDAPCDAPCDNA16DNA26DXASDXASDXASDXASDXASCYP191CY2A3CY2A3CY2A3CY2A3CY2A3DXASDXASDXASDXASDXASDXASCYP191CY2A3DAYC9DAYC9 <t< td=""><td>ASH1L</td><td>ASMTL</td><td>ASPM</td><td>ASTN1</td><td>ASXL2</td><td>ATIC</td><td>ATP11B</td><td>ATP12A</td><td>ATP1A1</td><td>ATP2B3</td></t<>	ASH1L	ASMTL	ASPM	ASTN1	ASXL2	ATIC	ATP11B	ATP12A	ATP1A1	ATP2B3
BRSA1BRUD1BTLABUB1C15orf23C15orf55C1QAC1SC3orf70C7orf33CR0734CACNA1ECADM2CAIRCAMTA1CASP1CASQ2CBLBCBR1CBR3CCD168CCNA1CCNB3CCT3CCT5CCT6BCD22CD33CD14CD74CDACDH11CDH18CD123CDK13CHD1CHD1CHD4CHD6CHD8CDACDH11CDH18CD123CDK13CHD1CHD1CLSPNCITCCN07CDACHFRCH131CHN1CITACLD18CD21CD5A1CD5A1CD5A1CD5A1CN074CNTN1CNTNACNTNAP1CNTNAP5CO1A1CO2A1CD5A1CD5A1CD5A1CD5A1CN074CNTN1CNTNACNTNAP1CNTNAP5CO1A1CO2A1CD5A1CD5A1CD5A1CD5A1CN074CNTN1CNTNACNTNAP1CNTNACNTA1CXC4CP4ACYP1A1CYP1A1CN745CP51CR14CTNA2CTNN1CUX1CXC4CP5ACYP1A1CYP1A1CYP1B1CYP2A13CYP2A3CYP2A6 <td< td=""><td>BAZ2B</td><td>BBC3</td><td>BBS9</td><td>BCAS1</td><td>BCL10</td><td>BCL11A</td><td>BCL11B</td><td>BCL2A1</td><td>BCL2L11</td><td>BCL3</td></td<>	BAZ2B	BBC3	BBS9	BCAS1	BCL10	BCL11A	BCL11B	BCL2A1	BCL2L11	BCL3
CACMA1ECADM2CALRCAMTA1CASP1CASQ2CBLBCBR1CBR3CCD168CCNA1CCNB3CCT3CCT5CCT6BCD22CD33CD14CD4CDACDH11CDH13CDH23CDK13CHD1CHD1CHD4CHD6CHD3CD9CHFRCH13LCHN1CITACLDN18CP11CISPNCITCCN073CN074CNTN1CNTNSCNTNAP1CNTNAP5COL1A1CO2A1COL5A1COL5A2COL5A3CO922CP51CRIPAKCRIF2CRNKL1CRTC1CSF1CSF3RCMD10CMD3CMD3CN141CNTA3CTNAP1CNNAP1CNTNACXX1CXCR4CYBACYP19A1CYP141CYP151CYP2A13CYP2C8CYP2A6CYP3A4CYP3A5DCCDDX3XDDX5DEKCY151CYP2A13CYP2C8CYP2A6CYP3A4CYP3A5DCCDDX3XDDX5DEKCY151CYP2A13CYP2C8CYP2A6CYP3A4CYP3A5DCCDDX3XDDX5DEKCY151CYP2A13DCK7DPYDDGGXDTX1DUSP22DYSFE2F3EF14CT14EGF17EGR3EIF2AK3EIF2AK3EIF3AEIF4A2EIF4A3EF4A3EAAEPHA7EPHB2EPHB4EPOREPYK1EN15ERB21PERC2ESR2ET51ET51ET51ET55ERB21PERC2ESR2ESR2ERG73 <td< td=""><td>BCL6</td><td>BCL9</td><td>BCORL1</td><td>BCR</td><td>BIRC3</td><td>BMPR2</td><td>BNC2</td><td>BPTF</td><td>BRD2</td><td>BRD3</td></td<>	BCL6	BCL9	BCORL1	BCR	BIRC3	BMPR2	BNC2	BPTF	BRD2	BRD3
CCDC168CCNA1CCNB3CCT3CCT5CCT6BCD22CD33CD51CD74CDACDH11CDH18CDH23CDK13CHD1CHD1CHO4CHO6CHO8CHO9CHFRCH131CHN1CITACLDN18CLP1CLSPNCITCCNT33CNOT4CNTN1CNTN5CNTNAP1CNTNAP5COL1A1COL2A1COL5A1COL5A2COL5A3COP52CPS1CRIPAKCRLF2CNNL1CRTC1CSF1CSF3RCSMD1CSMD3CSNK1A1CSNK163CTLACTNA2CTNND1CUX1CXCR4CYBACYP1A1CYP1A1CYP1A1CYP2A13CTQ2CYP2A6CYP2A6CYP2A6CYP2A6DMADMA16DNA161DNM2DNM11DM33DOCK2DOCK7DPYDDRGXDTX1DUSP22DYSFE2F3E8F1CT14EF14EGF17EGR3EIF2A3EIF2A3EIF3A3EIF4A2EIF4A3ELAC2EF14EF14EGR3EIF2AEMID2EML4EPA11EF4EPHA4EPHA7EPHB4EPOREPF1ES15ERB21PERC2ES2ET1ET11ETV5FA5FG73FA7FA11FG73 <td>BRSK1</td> <td>BRWD1</td> <td>BTLA</td> <td>BUB1</td> <td>C15orf23</td> <td>C15orf55</td> <td>C1QA</td> <td>C1S</td> <td>C3orf70</td> <td>C7orf53</td>	BRSK1	BRWD1	BTLA	BUB1	C15orf23	C15orf55	C1QA	C1S	C3orf70	C7orf53
CDACDH11CDH18CDH23CDK13CHD1CHD1LCHD4CHD6CHD8CHD9CHFRCHI3L1CHN1CIITACLDN18CLP1CLSPNCLTCCNOT3CNOT4CNTN1CNTN5CNTNAP1CNTNAP5COL1A1COL2A1COL5A1COL5A2COL5A3COP52CPS1CRIPAKCRIF2CRNL1CRTC1CSF1CSF3RCSMD1CSMD3CSNK1A1CSNK1G3CTLA4CTNNA2CTND1CUX1CXCR4CYBACYP1A1CYP1A1CYP1B1CYP2A13CYP2C8CYP2D6CYP3A4CYP3A5DCCDDX3XDDX5DEKDHX35DHX9DIAPH1DIS3L2DL1DMDDNAH6DNAIB1DNM2DNM11DNM38DOCK2DOCK7DPYDDRGXDTX1DUSP22DYSFE2F3EBF1ECT2LEEDEEF1A1EGFL7EGR3EIF2AK3EIF2AK3EIF3AEIFAA2EIF4G3ELAC2ELF1ELF3ELMO1ELNEME2EMI2EML4EPC1EFFA3EPHA4EPH3EFFAFAT3FAT4FCG1AFCG2AFCG2BFCG3AFCR14FGF10FGF12FGF14FGF23FGF6FLGFL11FLNCFNN2FT1FNDC4FGF12FGF14FGF23FGF6FLGFL11FLNCFNN2FC14FGF10FGF12FGF14FGF23FGF6FLGFL11FLNCFNN2 </td <td>C8orf34</td> <td>CACNA1E</td> <td>CADM2</td> <td>CALR</td> <td>CAMTA1</td> <td>CASP1</td> <td>CASQ2</td> <td>CBLB</td> <td>CBR1</td> <td>CBR3</td>	C8orf34	CACNA1E	CADM2	CALR	CAMTA1	CASP1	CASQ2	CBLB	CBR1	CBR3
CHD9CHFRCHI3L1CHN1CIITACLDN18CLP1CLSPNCLTCCNOT3CNOT4CNTN1CNTN5CNTNAP1CNTNAP5COL1A1COL2A1COL5A1COL5A2COL5A3COP52CP51CRIPAKCRLF2CRNKL1CRTC1CSF1CSF3RCSMD1CSMD3CSNK1A1CSNK1G3CTLA4CTNNA2CTNND1CUX1CXCR4CYBACYP1A1CYP1A1CYP1B1CYP2A13CYP2C8CYP2A6CYP3A4CYP3A5DCCDDX3XDDX5DEKDHX35DHX9DIAPH1DIS12DLC1DMDDNAH6DNAB1DNM2DNMT1DNMT38DOCK2DOCK7DPYDDRGXDTX1DUSP22DYSFE2F3EBF1ECT2LEEDEEF1A1EGF17EGR3EIF2AX3EIF2A3EIF3AEIF4A2EIF4A3EIF4A2EIF4A3EIF3AEIF4A2EIF4A3EIF3AEIF4A2EIF4A3	CCDC168	CCNA1	CCNB3	ССТЗ	CCT5	ССТ6В	CD22	CD33	CD5L	CD74
CNOT4CNTN1CNTN5CNTNAP1CNTNAP5COL1A1COL2A1COL5A1COL5A2COL5A3COP52CP51CRIPAKCRLF2CRNKL1CRTC1CSF1CSF3RCSMD1CSMD3CSNK1G3CTLA4CTNNA2CTNND1CUX1CXCR4CYBACYP1A1CYP1A1CYP1B1CYP2A3CYP2C8CYP2D6CYP3A4CYP3A5DCCDDX3XDDX5DEKDHX35DHX9DIAPH1DIS3L2DLC1DMDDNAH6DNAB1DNM2DNMT1DNMT38DOCK2DOCK7DPVDDRGXDTX1DUSP22DYSFE2F3EBF1EC72LEEDEEF1A1EGFL7EGR3EIF2AS3EIF2ASEIF3AEIF4A2EIF4G3ELAC2ELF1ELF3ELMO1ELNEME2EMID2EML4EPC1EPHA1EPA4EPH3EF1AEGGTEWSR1EZRFAFAM131BFAM135BFAM157BFAM46CFAM5CFAPFASLGFAT3FAT4FCGR1AFCGR2AFCGR2BFCGR3AFN1FNC4GSBP1G3BP2GAB2GABRA6GATA1GATA2GFRALGIGY1GKN2GB113GL1GL12GL3GMPSGNA13GN2GFRALGFR14GFS2GRA1GRB7GSX3GSTM5GSTP1GUSBH3F3AH3F3CH3F3CHCL31GN1HDAC4HDAC9HECW1HEY1HEY1H1CHIST1H1DHIST1H1D<	CDA	CDH11	CDH18	CDH23	CDK13	CHD1	CHD1L	CHD4	CHD6	CHD8
COPS2CPS1CRIPAKCRLF2CRNKL1CRTC1CSF1CSF3RCSMD1CSMD3CSNK1A1CSNK1G3CTLA4CTNNA2CTNND1CUX1CXCR4CYBACYP19A1CYP1A1CYP1B1CYP2A13CYP2C8CYP2D6CYP3A4CYP3A5DCCDDX3XDDX5DEKCYP1B1DHX9DIAPH1DIS3L2DLC1DMDDNAH6DNAIB1DNM2DNMT1DNMT3BDOCK2DOCK7DPYDDRGXDTX1DUSP22DYSFE2F3EBF1ECT2LEEDEEF1A1EGF17EGR3EIF2AK3EIF2G3EIF3AEIF4A2EIF4G3ELAC2ELF1ELF3ELM01ELNEME2EMID2EM44EPC1EFH43EPHA4EPHA7EPHB2EPHB4EPOREPPK1EPS15ERB2IPERC22ESR2ETS1ETV1ETV5ETV6EWSR1EZRF8FAM131BFAM135BFAM157BFAM46CFAM5CFAPFASLGFAT3FAT4FCGR1AFCGR2AFCGR2BFCGR3AFCRL4GF10FGF12FGF14FGF23FGF6FLIFLI1FLNCFNN2FX1G3BP1G3BP2GAB2GABRA6GATA1GAT22GFRALGIGYF1GKN2GB113GL1GL12GL13GMP5GNA13GNG2GPC3GPR124GPS2GB113GAB7GSK3BGSTM5GSTM5GSTM5GUSBH3F3AH3	CHD9	CHFR	CHI3L1	CHN1	CIITA	CLDN18	CLP1	CLSPN	CLTC	CNOT3
CSNK1A3CTLA4CTNNA2CTNND1CUX1CXCR4CYBACYP1A1CYP1A1CYP1B1CYP2A13CYP2A8CYP2A6CYP2A6CYP3A4CYP3A5DCCDDX3XDDX5DEKDHX35DHX9DIAPH1DIS3L2DLC1DMDDNAH6DNAJB1DNM2DNMT1DNMT3BDOCK2DOCK7DPYDDRGXDTX1DUSP22DYSFE2F3EBF1ECT2LEEDEEF1A1EGFL7EGR3EIF2A3EIF2A3EIF3AEIF4A2EIF4G3ELAC2ELF1ELF3ELM01ELNEME2EMID2EML4EPC1EPHA1EPHA4EPHA7EPHB2EPHB4EPOREPPK1EPS15ERB2IPERC22ESR2ETS1ETV1ETV5ETV6EWSR1EZRF8FAM131BFAM135BFAM157BFAM46CFAM5CFAPFASLGFAT3FAT4FCGR1AFCGR2AFCGR2BFCGR3AFRL4GF10FGF12FGF14FGF23FGF6FLGFL1FLNCFMN2FN1FNDC4FOX2FOX01FOX03FOX01FRMPD4FUSFX1FX1FNFZ1G3BP1G3BP2GAB2GABRA6GAT1GAT2GFRALGIGY1GSN2GN2GB113GH14GSK3BGSTM5GSTM5GSTM5GN33GNG2GPG3GPR124GPS2GB114HDAC9HECW1HEY1GUSBHIST1H1CHIST	CNOT4	CNTN1	CNTN5	CNTNAP1	CNTNAP5	COL1A1	COL2A1	COL5A1	COL5A2	COL5A3
CYP1B1CYP2A13CYP2C8CYP2D6CYP3A4CYP3A5DCCDDX3DDX5DEKDHX35DHX9DIAPH1DIS3L2DLC1DMDDNAH6DNAJB1DNM2DNM11DNMT3BDOCK2DOCK7DPYDDRGXDTX1DUSP22DYSFE2F3EBF1ECT2LEEDEEF1A1EGF17EGR3EIF2AK3EIF2G3EIF3AEIF4A2EIF4G3ELAC2ELF1ELF3ELM01ELNEME2EMID2EML4EPC1EPHA1EPHA4EPHA7EPHB2EPHB4EPOREPPK1EPS15ERB2IPERC2ESR2ETS1ETV1ETV5ETV6EWSR1EZRF8FAM131BFAM135BFAM157BFAM46CFAM5CFAPFASLGFAT3FAT4FCGR1AFCGR2AFCGR2BFCGR3AFCR14FGF10FGF12FGF14FGF23FGF6FLGFLI1FLNCFMN2FZD1G3BP1G3BP2GAB2GABRA6GATA1GAT22GFRALGIGYF1GKN2GB113GL11GL12GL3GMPSGNA13GNG2GPC3GPR124GP52GPX1GRB7GSK3BGSTM5GSTP1GUSBH3F3AH3F3BH3F3CHLS114C	COPS2	CPS1	CRIPAK	CRLF2	CRNKL1	CRTC1	CSF1	CSF3R	CSMD1	CSMD3
DHX35DHX9DIAPH1DIS3L2DLC1DMDDNAH6DNAJB1DNM2DNMT1DNMT3BDOCK2DOCK7DPYDDRGXDTX1DUSP22DYSFE2F3EBF1ECT2LEEDEEF1A1EGFL7EGR3EIF2AK3EIF2AC3EIF3AEIF4A2EIF4G3ELAC2ELF1ELF3ELM01ELNEME2EMID2EML4EPC1EPHA1EPHA4EPHA7EPHB2EPHB4EPOREPPK1EPS15ERBB2IPERCC2ESR2ETS1ETV1ETV5ETV6EWSR1EZRF8FAM131BFAM135BFAM157BFAM46CFAM5CFAPFASLGFAT3FAT4FCGR1AFCGR2AFCGR2BFCGR3AFCRL4FGF10FGF12FGF14FGF23FGF6FLGFLI1FLNCFYNFZD1G3BP1G3BP2GAB2GABRA6GATA1GATA2GFRALGIGYF1GKN2GBL13GL11GL12GL3GSTM5GSTP1GUSBH3F3AH3F3BH3F3CHLS11H2CGPX1HDAC4HDAC4HDAC4HDAC4HCY1HEY1HIST1H1CHIST1H1CHIST1H1CHIST1H2CHIST1H2C	CSNK1A1	CSNK1G3	CTLA4	CTNNA2	CTNND1	CUX1	CXCR4	СҮВА	CYP19A1	CYP1A1
DNMT3BDOCK2DOCK7DPYDDRGXDTX1DUSP22DYSFE2F3EBF1ECT2LEEDEEF1A1EGFL7EGR3EIF2AK3EIF2C3EIF3AEIF4A2EIF4A3ELAC2ELF1ELF3ELMO1ELNEME2EMID2EML4EPC1EPHA1EPHA4EPHA7EPHB2EPHB4EPOREPPK1EPS15ERBB2IPERC22ESR2ETS1ETV1ETV5ETV6EWSR1EZRF8FAM131BFAM135BFAM157BFAM46CFAM5CFAPFASLGFAT3FAT4FCGR1AFCGR2AFCGR2BFCGR3AFCR14FGF10FGF12FGF14FGF23FGF6FLGFLI1FLNCFMN2FZD1G3BP1G3BP2GAB2GABRA6GATA1GATA2GFRALGIGYF1GKN2GEN13GL11GL12GL13GMPSGNA13GNG2GPC3GPR124GPS2GPX1HDAC4HDAC9HECW1HEY1HIST1H1CHIST1H1DHIST1H1DHIST1H2AHIST1H2A	CYP1B1	CYP2A13	CYP2C8	CYP2D6	CYP3A4	CYP3A5	DCC	DDX3X	DDX5	DEK
ECT2LEEDEEF1A1EGFL7EGR3EIF2AK3EIF2C3EIF3AEIF4A2EIF4A2EIF4G3ELAC2ELF1ELF3ELM01ELNEME2EMID2EML4EPC1EPHA1EPHA4EPHA7EPHB2EPHB4EPOREPPK1EPS15ERBB2IPERCC2ESR2ETS1ETV1ETV5ETV6EWSR1EZRF8FAM131BFAM135BFAM157BFAM46CFAM5CFAPFASLGFAT3FAT4FCGR1AFCGR2AFCGR2BFCGR3AFCRL4FGF10FGF12FGF14FGF23FGF6FLGFLI1FLNCFMN2FX1FNDC4FOXA2FOX01FOX03FOXQ1FRMPD4FUSFXR1FYNFZD1G3BP1G3BP2GAB2GABRA6GATA1GATA2GPC3GPR124GPS2GPX1GRB7GSK3BGSTM5GSTP1GUSBH3F3AH3F3BH3F3CHL51H2AHDAC4HDAC9HECW1HEY1HIST1H1CHIST1H1DHIST1H1EHIST1H2ACHIST1H2A	DHX35	DHX9	DIAPH1	DIS3L2	DLC1	DMD	DNAH6	DNAJB1	DNM2	DNMT1
ELAC2ELF1ELF3ELMO1ELNEME2EMID2EML4EPC1EPHA1EPHA4EPHA7EPHB2EPHB4EPOREPPK1EPS15ERBB2IPERCC2ESR2ETS1ETV1ETV5ETV6EWSR1EZRF8FAM131BFAM135BFAM157BFAM46CFAM5CFAPFASLGFAT3FAT4FCGR1AFCGR2AFCGR2BFCGR3AFCRL4FGF10FGF12FGF14FGF23FGF6FLGFLI1FLNCFMN2FN1SNDC4FOX21FOX01FOX03FOXQ1FRMPD4FUSFXR1FYNFZD1G3BP1G3BP2GAB2GABRA6GATA1GAT22GFRALGIGYF1GKN2GPX1GRB7GSK3BGSTM5GSTP1GUSBH3F3AH3F3BH3F3CHCL1HDAC4HDAC9HECW1HEY1HIST1H1CHIST1H1DHIST1H1EHIST1H2ACHIST1H2AC	DNMT3B	DOCK2	DOCK7	DPYD	DRGX	DTX1	DUSP22	DYSF	E2F3	EBF1
EPHA4EPHA7EPHB2EPHB4EPOREPPK1EPS15ERBB2IPERCC2ESR2ETS1ETV1ETV5ETV6EWSR1EZRF8FAM131BFAM135BFAM157BFAM46CFAM5CFAPFASLGFAT3FAT4FCGR1AFCGR2AFCGR2BFCGR3AFCRL4FGF10FGF12FGF14FGF23FGF6FLGFLI1FLNCFMN2FN1FNDC4FOXA2FOX01FOXO3FOXQ1FRMPD4FUSFXR1FYNFZD1G3BP1G3BP2GAB2GABRA6GATA1GATA2GFRALGIGYF1GKN2GL11GL12GL13GMPSGNA13GNG2GPC3GPR124GPS2GPX1HDAC4HDAC9HECW1HEY1HIST1H1CHIST1H1DHIST1H1EHIST1H2ACHIST1H2AC	ECT2L	EED	EEF1A1	EGFL7	EGR3	EIF2AK3	EIF2C3	EIF3A	EIF4A2	EIF4G3
ETS1ETV1ETV5ETV6EWSR1EZRF8FAM131BFAM135BFAM157BFAM46CFAM5CFAPFASLGFAT3FAT4FCGR1AFCGR2AFCGR2BFCGR3AFCRL4FGF10FGF12FGF14FGF23FGF6FLGFLI1FLNCFMN2FN1FNDC4FOXA2FOX01FOXO3FOXQ1FRMPD4FUSFXR1FYNFZD1G3BP1G3BP2GAB2GABRA6GATA1GATA2GFRALGIGYF1GKN2GL11GL12GL13GMPSGNA13GNG2GPC3GPR124GPS2GPX1HDAC4HDAC9HECW1HEY1HIST1H1CHIST1H1DHIST1H1EHIST1H2ACHIST1H2AC	ELAC2	ELF1	ELF3	ELMO1	ELN	EME2	EMID2	EML4	EPC1	EPHA1
FAM46CFAM5CFAPFASLGFAT3FAT4FCGR1AFCGR2AFCGR2BFCGR2BFCGR3AFCRL4FGF10FGF12FGF14FGF23FGF6FLGFLGFL11FLNCFMN2FN1FNDC4FOXA2FOX01FOXO3FOXQ1FRMPD4FUSFXR1FYNFZD1G3BP1G3BP2GAB2GABRA6GATA1GATA2GFRALGIGYF1GKN2GL11GL12GL13GMPSGNA13GNG2GPC3GPR124GPS2GPX1HDAC4HDAC9HECW1HEY1HIST1H1CHIST1H1DHIST1H1EHIST1H2ACHIST1H2AC	EPHA4	EPHA7	EPHB2	EPHB4	EPOR	EPPK1	EPS15	ERBB2IP	ERCC2	ESR2
FCRL4FGF10FGF12FGF14FGF23FGF6FLGFLI1FLNCFMN2FN1FNDC4FOXA2FOX01FOXO3FOXQ1FRMPD4FUSFXR1FYNFZD1G3BP1G3BP2GAB2GABRA6GATA1GATA2GFRALGIGYF1GKN2GLB13GL11GL12GL13GMPSGNA13GNG2GPC3GPR124GPS2GPX1GRB7GSK3BGSTM5GSTP1GUSBH3F3AH3F3BH3F3CHCLS1HCN1HDAC4HDAC9HECW1HEY1HIST1H1CHIST1H1DHIST1H1EHIST1H2ACHIST1H2AC	ETS1	ETV1	ETV5	ETV6	EWSR1	EZR	F8	FAM131B	FAM135B	FAM157B
FN1FNDC4FOXA2FOXO1FOXO3FOXQ1FRMPD4FUSFXR1FYNFZD1G3BP1G3BP2GAB2GABRA6GATA1GATA2GFRALGIGYF1GKN2GLB1L3GL12GL13GMPSGNA13GNG2GPC3GPR124GPS2GPX1GRB7GSK3BGSTM5GSTP1GUSBH3F3AH3F3BH3F3CHCLS1HCN1HDAC4HDAC9HECW1HEY1HIST1H1CHIST1H1DHIST1H1EHIST1H2ACHIST1H2AG	FAM46C	FAM5C	FAP	FASLG	FAT3	FAT4	FCGR1A	FCGR2A	FCGR2B	FCGR3A
FZD1G3BP1G3BP2GAB2GABRA6GATA1GATA2GFRALGIGYF1GKN2GLB1L3GLI1GLI2GLI3GMPSGNA13GNG2GPC3GPR124GPS2GPX1GRB7GSK3BGSTM5GSTP1GUSBH3F3AH3F3BH3F3CHCLS1HCN1HDAC4HDAC9HECW1HEY1HIST1H1CHIST1H1DHIST1H1EHIST1H2ACHIST1H2AC	FCRL4	FGF10	FGF12	FGF14	FGF23	FGF6	FLG	FLI1	FLNC	FMN2
GLB1L3GLI2GLI3GMPSGNA13GNG2GPC3GPR124GPS2GPX1GRB7GSK3BGSTM5GSTP1GUSBH3F3AH3F3BH3F3CHCLS1HCN1HDAC4HDAC9HECW1HEY1HIST1H1CHIST1H1DHIST1H1EHIST1H2ACHIST1H2AG	FN1	FNDC4	FOXA2	FOXO1	FOXO3	FOXQ1	FRMPD4	FUS	FXR1	FYN
GPX1 GRB7 GSK3B GSTM5 GSTP1 GUSB H3F3A H3F3B H3F3C HCLS1 HCN1 HDAC4 HDAC9 HECW1 HEY1 HIST1H1C HIST1H1D HIST1H1E HIST1H2AC HIST1H2AC	FZD1	G3BP1	G3BP2	GAB2	GABRA6	GATA1	GATA2	GFRAL	GIGYF1	GKN2
HCN1 HDAC4 HDAC9 HECW1 HEY1 HIST1H1C HIST1H1D HIST1H1E HIST1H2AC HIST1H2AG	GLB1L3	GLI1	GLI2	GLI3	GMPS	GNA13	GNG2	GPC3	GPR124	GPS2
	GPX1	GRB7	GSK3B	GSTM5	GSTP1	GUSB	H3F3A	H3F3B	H3F3C	HCLS1
HIST1H2AL HIST1H2AM HIST1H2BC HIST1H2BD HIST1H2BJ HIST1H2BK HIST1H2BO HIST1H3B HIST1H3C HIST1H3D	HCN1	HDAC4	HDAC9	HECW1	HEY1	HIST1H1C	HIST1H1D	HIST1H1E	HIST1H2AC	HIST1H2AG
	HIST1H2AL	HIST1H2AM	HIST1H2BC	HIST1H2BD	HIST1H2BJ	HIST1H2BK	HIST1H2BO	HIST1H3B	HIST1H3C	HIST1H3D

Electronically Signed by

Name:

_

Genekor Medical S.A. 52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Report No:

-

HIST1H3F	HIST1H3G	HIST1H3H	HIST1H3I	HIST1H4I	HIST3H3	HLA-A	HLA-B	HLA-C	HLF
HMCN1	HNF1B	HNRPDL	HOXA11	HOXA13	HOXA3	HOXA9	HOXC13	HOXD11	HOXD13
HSD3B1	HSP90AA1	HSP90AB1	HSPA8	HSPD1	HSPH1	ІСК	ICOSLG	ID3	IFITM3
IGF1	IGF2	IGF2R	IGLL5	IKZF2	IKZF3	IL10	IL1RAPL1	IL21R	IL6
IL6ST	IMPG1	ING1	INHBA	INPP4A	INPPL1	INSR	IRF4	IRF6	IRS1
ITGB3	ІТК	ITSN1	JARID2	KALRN	КАТ6А	КАТ6В	KCNJ5	KCNQ2	KDM2B
KEL	KIF5B	KLF4	KLHL6	KLK1	KRTAP5-5	L3MBTL1	LAMA2	LATS1	LATS2
LCP1	LEF1	LGALS8	LIFR	LPHN2	LPP	LRP2	LRP4	LRP5	LRP6
LRRC7	LRRK2	LYN	LZTS1	MACF1	MAD1L1	MAGI2	MAML2	MAML3	MAP3K13
МАРКЗ	MCC	MCM3	MDC1	MECOM	MEF2C	MGA	MIB1	MIOS	MKL1
MLL4	MLLT3	MMP11	MMP2	MN1	MNDA	MNX1	MSH4	MSN	MSR1
MTHFR	MTRR	MUC5B	MYH11	MYH14	MYH9	МҮОЗА	MYOD1	NAP1L1	NAV3
NCAM2	NCF2	NCF4	NCK1	NCOA3	NCOA4	NCOR2	NCSTN	NDUFA13	NFATC4
NFE2L3	NKX3-1	NLRC3	NOD1	NOS3	NOTCH4	NQ01	NR1I2	NR2F2	NR4A2
NRG1	NRP2	NRXN1	NTM	NUMA1	NUP107	NUP210	NUP93	NUP98	OBSCN
OGDH	OMD	OPCML	OR11G2	OR2T4	OR4A15	OR4C6	OR5L2	OR6F1	P2RY8
P4HB	PABPC1	PABPC3	PAG1	PAK1	РАКЗ	PASK	PAX3	PAX7	РС
PCDH18	PCSK6	PCSK7	PDCD11	PDE4DIP	PDGFB	PDILT	PER1	PGR	PHF1
PHF6	PIK3C2A	PIK3C2B	PIK3C2G	PIK3C3	PIM1	PKD1L2	PKHD1	PLAG1	PLCB1
PLCG1	PLCG2	PLK1	PLXNA1	PLXNB2	PNRC1	POLQ	POM121	POM121L12	POU2AF1
PPM1D	PPP1R17	PPP6C	PRDM16	PREX2	PRF1	PRKAA1	PRKCB	PRKCI	PRKDC
PRRX1	PRX	PSG2	PSIP1	PSMB1	PSMB5	PTGS1	PTGS2	PTPN13	PTPN2
PTPRB	PTPRK	PTPRO	PTPRS	PTPRT	PTPRU	RAB35	RAC2	RAD21	RAD54B
RANBP2	RASA1	RASGRP1	RBL1	REL	RELN	RFC1	RGS3	RHEB	RHOH
RHOT1	RIT1	RNASEL	ROBO1	ROBO2	ROBO3	ROCK1	RPGR	RPS6KB1	RPS6KB2
RSPO2	RSPO3	RUNX1T1	RUNX2	RXRA	RYR1	RYR2	SBDS	SCUBE2	SDC4
SEC31A	SEMA3A	SEMA3E	SEMA6A	SERPINA7	SETBP1	SETDB1	SF1	SF3A1	SFPQ
SGCZ	SGK1	SH2B3	SH2D1A	SH3PXD2A	SHH	SI	SIN3A	SLC16A1	SLC1A2
SLC22A16	SLC22A18	SLC22A2	SLC22A3	SLC34A2	SLCO1B3	SLIT1	SLIT2	SMARCD1	SMARCE1
SMC1A	SMC1B	SNCAIP	SNTG1	SNX29	SOD2	SOS1	SOX10	SOX17	SPEN
SPRR3	SPSB4	SPTA1	SRD5A2	SRGAP1	SRGAP3	SRSF2	SRSF7	STAG1	STAT1
SUCLG1	SUCLG2	SULT1A1	SUZ12	SVEP1	SYNCRIP	SYNE1	TAF1	TAF15	TAF1L
TAL1	TBL1XR1	TBX15	TBX22	TCEB1	TCF12	TCF3	TCF4	TCL1A	TEC
TENM3	TERT	TET1	TFDP1	TFDP2	TFE3	TGFBR1	THBS2	TJP1	TLE1
TLL2	TLR4	TLX3	TMEM132D	TNFSF11	TNN	TP53BP1	TP63	TP73	ТРМ3
TPR	TRAF2	TRAF7	TRIM24	TRIM58	TRIO	TRPC5	TRRAP	TSHZ2	TSHZ3
TTF1	TUBA3C	TUBB3	TUSC3	TXNIP	TYMS	TYR	UBE2D2	UBR5	UGT1A1

Electronically Signed by

Genekor Medical S.A. 52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.Ml. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Name:

_

Report No:

-

UMPS	UPF3B	USH2A	USP6	USP8	VEZF1	VIM	VTCN1	WASF3	WDR90
WDTC1	WHSC1	WHSC1L1	WIPF1	WNK1	WNT5A	WSCD2	WWOX	WWP1	WWP2
XIAP	ХРС	XRCC1	XRCC3	YAP1	YY1AP1	ZBTB16	ZC3H11A	ZFHX3	ZFP36L1
ZFP36L2	ZFPM2	ZIC3	ZNF217	ZNF384	ZNF521	ZNF638	ZNF750	ZNF804B	
36 HRR genes analyzed									
ATM	ATR	ATRX	BAP1	BARD1	BLM	BRCA1	BRCA2	BRIP1	CDK12
CHEK1	CHEK2	C11orf30	ERCC1	FAM175A	FANCA	FANCC	FANCD2	FANCE	FANCF
FANCG	FANCL	FANCM	MRE11	NBN	PALB2	RAD50	RAD51	RAD51B	RAD51C
RAD51D	RAD52	RAD54L	RECQL	RECQL4	WRN				

Page 31 of 35

Name:

Report No:

_

12.f. Levels of Evidence for Genomic Biomarkers

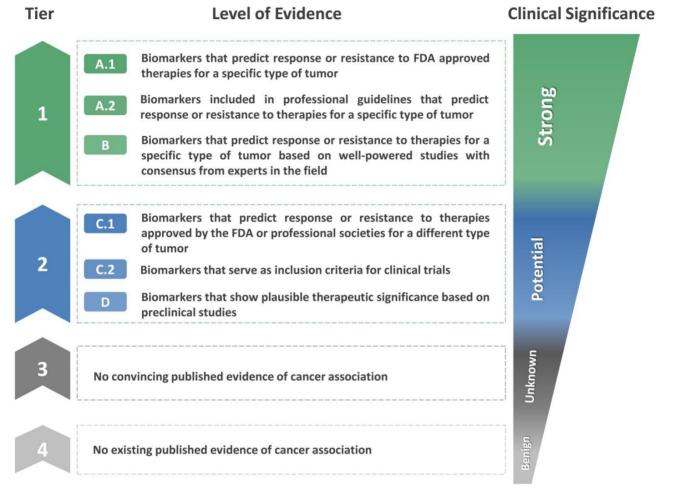


Figure 1. Joint consensus recommendation of AMP, ACMG, ASCO and CAP for reporting genetic

variants in cancer. [1-2]

1. Leichsenring J, Horak P, Kreutzfeldt S, et al. Int J Cancer. 2019 Dec 1;145(11):2996-3010.

2. Li MM, Datto M, Duncavage EJ, et al. J Mol Diagn. 2017 Jan;19(1):4-23.

Name:

Report No:

_

References

- 1 Zhang W, Wang R, Fang H, Ma X, Li D, Liu T, Chen Z, Wang K, Hao S, Yu Z, Chang Z, Na C, Wang Y, Bai J, Zhang Y, Chen F, Li M, Chen C, Wei L, Li J, Chang X, Qu S, Yang L, Huang J. Influence of low tumor content on tumor mutational burden estimation by whole-exome sequencing and targeted panel sequencing. Clin Transl Med. 2021 May;11(5):e415. doi: 10.1002/ctm2.415. PMID: 34047470; PMCID: PMC8102856.
- 2 Zhang Y, Yao Y, Xu Y, Li L, Gong Y, Zhang K, Zhang M, Guan Y, Chang L, Xia X, Li L, Jia S, Zeng Q. Pan-cancer circulating tumor DNA detection in over 10,000 Chinese patients. Nat Commun. 2021 Jan 4;12(1):11. doi: 10.1038/s41467-020-20162-8. Erratum in: Nat Commun. 2021 Feb 10;12(1):1048. PMID: 33397889; PMCID: PMC7782482.
- 3. Melhem-Bertrandt A et al. Early onset HER2-positive breast cancer is associated with germline TP53 mutations. Cancer. 2012 Feb 15;118(4):908-13. doi: 10.1002/cncr.26377. (PMID: 21761402)
- 4. Meric-Bernstam F et al. Efficacy and Safety of Trastuzumab Deruxtecan in Patients With HER2-Expressing Solid Tumors: Primary Results From the DESTINY-PanTumor02 Phase II Trial. J Clin Oncol. 2024 Jan 1;42(1):47-58. doi: 10.1200/JCO.23.02005. (PMID: 37870536)
- Mosrati MA et al. TERT promoter mutations and polymorphisms as prognostic factors in primary glioblastoma. Oncotarget. 2015 Jun 30;6(18):16663-73. doi: 10.18632/oncotarget.4389. (PMID: 26143636)
- Manandhar M et al. The ERCC1 and ERCC4 (XPF) genes and gene products. Gene. 2015 Sep 15;569(2):153-61. doi: 10.1016/j.gene.2015.06.026. (PMID: 26074087)
- Manandhar M et al. The ERCC1 and ERCC4 (XPF) genes and gene products. Gene. 2015 Sep 15;569(2):153-61. doi: 10.1016/j.gene.2015.06.026. (PMID: 3156279637068504)
- 8. Joerger AC et al. The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb Perspect Biol. 2010 Jun;2(6):a000919. doi: (PMID: 20516128)
- Wolff AC et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer. Arch Pathol Lab Med. 2023 Sep 1;147(9):993-1000. doi: 10.5858/arpa.2023-0950-SA. (PMID: 37303228)
- Wolff AC et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer. Arch Pathol Lab Med. 2023 Sep 1;147(9):993-1000. doi: 10.5858/arpa.2023-0950-SA. (PMID: 21430697))SomaticmutationsofPTENoccurinmultiplemalignancies.
- 11. Valtorta E et al. Assessment of a HER2 scoring system for colorectal cancer: results from a validation study. Mod Pathol. 2015 Nov;28(11):1481-91. doi: 10.1038/modpathol.2015.98. (PMID: 26449765)
- Yehia L et al. PTEN-opathies: from biological insights to evidence-based precision medicine. J Clin Invest. 2019 Feb 1;129(2):452-464. doi: 10.1172/JCl121277. (PMID: 30614812)
- Bartley AN et al. HER2 Testing and Clinical Decision Making in Gastroesophageal Adenocarcinoma: Guideline From the College of American Pathologists, American Society for Arch Pathol Lab Med. 2016 Dec;140(12):1345-1363. doi: 10.5858/arpa.2016-0331-CP. (PMID: 27841667)
- 14. Eckel-Passow JE et al. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N Engl J Med. 2015 Jun 25;372(26):2499-508. doi: 10.1056/NEJMoa1407279. (PMID: 26061753)
- 15. Jung KS et al. Pilot study of sirolimus in patients with PIK3CA mutant/amplified refractory solid cancer. Mol Clin Oncol. 2017 Jul;7(1):27-31. doi: 10.3892/mco.2017.1272. (PMID: 28685070)
- 16. Raghav K et al. Trastuzumab deruxtecan in patients with HER2-positive advanced colorectal cancer (DESTINY-CRC02): primary results from a multicentre, randomised, phase 2 trial. Lancet Oncol. 2024 Sep;25(9):1147-1162. doi: 10.1016/S1470-2045(24)00380-2. (PMID: 39116902)
- 17. Walsh T et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):18032-7. doi: (PMID: 22006311)

Genekor a company certified with ELOT EN ISO 9001:2015 (Cert. No 041150049), ELOT ISO/IEC 27001:2013 (Cert. No 048190009) and accredited under the terms of ELOT EN ISO 15189:2012 (Cert. No. 822)

Name:

Report No:

- Yuan Y et al. TERT mutation in glioma: Frequency, prognosis and risk. J Clin Neurosci. 2016 Apr;26:57-62. doi: 10.1016/j.jocn.2015.05.066.
 (PMID: 26765760)
- 19. Pourmand G et al. Role of PTEN gene in progression of prostate cancer. Urol J. 2007 Spring;4(2):95-100. (PMID: 17701929)
- 20. Bartley AN et al. HER2 Testing and Clinical Decision Making in Gastroesophageal Adenocarcinoma: Guideline From the College of American Pathologists, American Society for J Clin Oncol. 2017 Feb;35(4):446-464. doi: 10.1200/JCO.2016.69.4836. (PMID: 28129524)
- 21. Olivier M et al. **TP53 mutations in human cancers: origins, consequences, and clinical use.** Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. doi: (PMID: 20182602)
- 22. Tarantino P et al. ESMO expert consensus statements (ECS) on the definition, diagnosis, and management of HER2-low breast cancer. Ann Oncol. 2023 Aug;34(8):645-659. doi: 10.1016/j.annonc.2023.05.008. (PMID: 37269905)
- 23. Shan L et al. Defining relative mutational difficulty to understand cancer formation. Cell Discov. 2020 Jul 21;6:48. doi: 10.1038/s41421-020-0177-8. eCollection 2020. (PMID: 32704382)
- 24. Huang ZL et al. Analysis of ERCC1, BRCA1, RRM1 and TUBB3 as predictors of prognosis in patients with non-small cell lung cancer who received cisplatin-based adjuvant Oncol Lett. 2016 Jan;11(1):299-305. doi: 10.3892/ol.2015.3894. (PMID: 26870207)
- Olivier M et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat. 2002 Jun;19(6):607-14. doi: 10.1002/humu.10081. (PMID: 12007217)
- 26. Shitara K et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, Lancet. 2018 Jul 14;392(10142):123-133. doi: 10.1016/S0140-6736(18)31257-1. (PMID: 29880231)
- 27. Xu J et al. Heterogeneity of Li-Fraumeni syndrome links to unequal gain-of-function effects of p53 mutations. Sci Rep. 2014 Feb 27;4:4223. doi: 10.1038/srep04223. (PMID: 24573247)
- Amable L. Cisplatin resistance and opportunities for precision medicine. Pharmacol Res. 2016 Apr;106:27-36. doi: 10.1016/j.phrs.2016.01.001. (PMID: 26804248)
- 29. Robinson D et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015 May 21;161(5):1215-1228. doi: 10.1016/j.cell.2015.05.001. (PMID: 26000489)
- 30. Schmid GL et al. Sirolimus treatment of severe PTEN hamartoma tumor syndrome: case report and in vitro studies. Pediatr Res. 2014 Apr;75(4):527-34. doi: 10.1038/pr.2013.246. (PMID: 24366516)
- 31. Mighell TL et al. A Saturation Mutagenesis Approach to Understanding PTEN Lipid Phosphatase Activity and Genotype-Phenotype Relationships. Am J Hum Genet. 2018 May 3;102(5):943-955. doi: 10.1016/j.ajhg.2018.03.018. (PMID: 29706350)
- 32. Jamaspishvili T et al. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol. 2018 Apr;15(4):222-234. doi: 10.1038/nrurol.2018.9. (PMID: 29460925)
- Liao X et al. Expression and Clinical Significance of ERCC1 and XPF in Human Hepatocellular Carcinoma. Onco Targets Ther. 2020 Feb 4;13:1059-1072. doi: 10.2147/OTT.S237916. eCollection (PMID: 32099408)
- 34. Kim HS et al. Clinical implications of TERT promoter mutation on IDH mutation and MGMT promoter methylation in diffuse gliomas. Pathol Res Pract. 2018 Jun;214(6):881-888. doi: 10.1016/j.prp.2018.04.002. (PMID: 29650441)
- 35. BiÅjof V et al. The prognostic and predictive value of excision repair cross-complementation group 1 (ERCC1) protein in 1288 patients with head and neck squamous cell Eur Arch Otorhinolaryngol. 2016 Sep;273(9):2305-17. doi: (PMID: 26179868)
- 36. Kato K et al. **KEYNOTE-590: Phase III study of first-line chemotherapy with or without pembrolizumab for advanced esophageal cancer.** Future Oncol. 2019 Apr;15(10):1057-1066. doi: 10.2217/fon-2018-0609. (PMID: 30735435)
- 37. Han SY et al. Functional evaluation of PTEN missense mutations using in vitro phosphoinositide phosphatase assay. Cancer Res. 2000 Jun 15;60(12):3147-51. (PMID: 10866302)

Electronically Signed by

Name:

Report No:

- 38. Barthel FP et al. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat Genet. 2017 Mar;49(3):349-357. doi: 10.1038/ng.3781. (PMID: 28135248)
- 39. Varley JM et al. An extended Li-Fraumeni kindred with gastric carcinoma and a codon 175 mutation in TP53. J Med Genet. 1995 Dec;32(12):942-5. doi: 10.1136/jmg.32.12.942. (PMID: 8825920)
- 40. Spiegl-Kreinecker S et al. Prognostic quality of activating TERT promoter mutations in glioblastoma: interaction with the rs2853669 polymorphism and patient age at diagnosis. Neuro Oncol. 2015 Sep;17(9):1231-40. doi: 10.1093/neuonc/nov010. (PMID: 25681309)
- 41. Dilawari A et al. FDA Approval Summary: Mirvetuximab Soravtansine-Gynx for FRα-Positive, Platinum-Resistant Ovarian Cancer. Clin Cancer Res. 2023 Oct 2;29(19):3835-3840. doi: 10.1158/1078-0432.CCR-23-0991. (PMID: 37212825)
- 42. Shah MA et al. Zolbetuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: the randomized, phase 3 GLOW trial. Nat Med. 2023 Aug;29(8):2133-2141. doi: 10.1038/s41591-023-02465-7. (PMID: 37524953)
- Beroukhim R et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010 Feb 18;463(7283):899-905. doi: 10.1038/nature08822. (PMID: 20164920)
- 44. Grugan KD et al. A common p53 mutation (R175H) activates c-Met receptor tyrosine kinase to enhance tumor cell invasion. Cancer Biol Ther. 2013 Sep;14(9):853-9. doi: 10.4161/cbt.25406. (PMID: 23792586)
- McIntyre JF et al. Germline mutations of the p53 tumor suppressor gene in children with osteosarcoma. J Clin Oncol. 1994 May;12(5):925-30. doi: 10.1200/JCO.1994.12.5.925. (PMID: 8164043)
- 46. Shay JW et al. A survey of telomerase activity in human cancer. Eur J Cancer. 1997 Apr;33(5):787-91. doi: 10.1016/S0959-8049(97)00062-2. (PMID: 9282118)
- 47. Weeber F et al. Predicting clinical benefit from everolimus in patients with advanced solid tumors, the CPCT-03 study. Oncotarget. 2017 Mar 8;8(33):55582-55592. doi: 10.18632/oncotarget.16029. (PMID: 28903445)
- 48. Hollander MC et al. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer. 2011 Apr;11(4):289-301. doi: 10.1038/nrc3037. (PMID: 21430697)
- 49. Killela PJ et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of selfrenewal. Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6021-6. doi: (PMID: 23530248)
- 50. Killela PJ et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-Proc Natl Acad Sci U S Α. 2013 9;110(15):6021-6. doi: renewal. Apr (PMID: 17701929))Itisestimatedthatmorethan40% of patients with mCRPC have functional loss of phosphatase and tensinhomolog (PTEN) tumor suppre ssorgene
- 51. Wong P et al. Prevalence of early onset colorectal cancer in 397 patients with classic Li-Fraumeni syndrome. Gastroenterology. 2006 Jan;130(1):73-9. doi: 10.1053/j.gastro.2005.10.014. (PMID: 16401470)
- 52. Dillon LM et al. Therapeutic targeting of cancers with loss of PTEN function. Curr Drug Targets. 2014 Jan;15(1):65-79. doi: 10.2174/1389450114666140106100909. (PMID: 24387334)
- 53. Muller PA et al. **p53 mutations in cancer.** Nat Cell Biol. 2013 Jan;15(1):2-8. doi: 10.1038/ncb2641. (PMID: 23263379)
- 54. Templeton AJ et al. Phase 2 trial of single-agent everolimus in chemotherapy-naive patients with castration-resistant prostate cancer (SAKK 08/08). Eur Urol. 2013 Jul;64(1):150-8. doi: 10.1016/j.eururo.2013.03.040. (PMID: 23582881)
- 55. Fan X et al. Brain regions associated with telomerase reverse transcriptase promoter mutations in primary glioblastomas. J Neurooncol. 2016 Jul;128(3):455-62. doi: 10.1007/s11060-016-2132-y. (PMID: 27230769)
- 56. Olivier M et al. Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res. 2003 Oct 15;63(20):6643-50. (PMID: 14583457)
- 57. https://civic.genome.wustl.edu/
- 58. http://cancer.sanger.ac.uk/

Electronically Signed by

PRECISION INDIVIDUALIZED MEDICINE

Genekor Medical S.A. 52, Spaton Ave., 15344,Gerakas, Athens, Greece, G.E.MI. nr: 0007856001000 info@genekor.com www.genekor.com Tel. (+30) 210 6032138 Fax. (+30) 210 6032148 Scientific Director: George Nasioulas PhD

Page 35 of 35

Name:

Report No:

-

59. https://www.clinicaltrials.gov

60. http://atlasgeneticsoncology.org

61. https://www.oncokb.org/

_

- 62. https://www.mycancergenome.org/
- 63. https://pmkb.org//

